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PREFACE

Tars book is designed primarily for use as a text-book in the
freshman year of colleges and technical schools. Special attention.\
is directed to the following features:

(1) The method of reviewing the algebra of the secondary

schools. O

(2) The selection and omission of material. A\ 3

(8) The explicit statement of assumptions upon Whteh the proofs
are based. AN\

(4) The application of algebraic methods tqQ phyéjg%ggg&lﬁ)q}asfynr

For the majority of college freshmen, a eonsiderable period of
time elapses between the completion of the high school algebra
and the beginning of college mathematics. The review of the
secondary school algebra is written for*these students. This part
of the book is, however, more thah a hasty review. While the
student is reviewing a first eotii:Se: he is at the same time making
a distinet advance by seeing the subject-matter from new view-
points, which his added foaturity enables him to appreciate. For
example, the functipnal/notation, graphs, and determinants are
introduced and used %o advantage in the review. The extensions
of the number coneept receive fuller treatment than is usual in a
college algebra. “The various classes of numbers from positive in-
tegers to com lex numbers are treated in the order in which they
are demanded by the equation.

The application of algebra in the more advanced courses in
}Il?:tllefnatics has been an important factor in determining the
\'S\llbject-matter. Not only are some of the topics usually treated

fi the traditional course in algebra entirely omitted, but in each
chapter the material is restricted to the development of those
central points which experience has shown to be essential. While
a complete discussion of limits and infinite series does not prop-
erly belong in a course in algebra, it has been thought best to
include an introduction to these subjects which covers in con-
siderable detail only the theory necessary to a discussion of the
comparison and ratio tests. From the experience of the authors,

v



vi PREFACE

a great deal is gained by thus taking a very elementary first cous
in limits and series.

While it is out of place in a book of this character to attemp
a critical study of fundamentals, great care has heen taken
point out just what is proved and what ix assumed in so far st
first-year student can be expected to appreciate the necessity ¢
assumptions. "

Without trying to teach physics or engineering, many problém
are introduced in which the principles of algebra are applisd &
physical problems, but no technical knowledge ix axxufigd on th
part of the student. Rules for the mechanical glg'reiunce of s
dents in solving problems have been used sparingl¥.

The authors take great pleasure in mwkm}\:’h:dging their v
debtedness to their colleagues in the matheitical and cngineer
ing departments of the University of mm\(ﬁs. We are indebted
to Professors Haskins and Youngyfer suggestions during the
preparation of the manuscript as €Ol as for o critical reading
th‘? manuscript; to Professor‘s;TO\“\'nsond, Goodenough, Miller
Wilezynski, Dr. Lytle, and tovProfessor Kuhn of Ohio State Uni
versity for suggestions upofrthe manuscript; to Professor Wai
for some of the practical prbblems; and again to Professor Good
enough for assistar{qein seeing the hook through the press.

.\\ H. 1. RIETZ
et A. R. CRATHORNE

A%/

9.\
~“PREFACE TO THE FOURTH EDITION

N\
.'j:{IhIS Fourth Edition is the most painstaking revision that 6
X "\book has undergone in its thirty years of classroom use.

) the general character and style of the book remain essentially |
.altered, many features have been changed in the light of the €&
ng expenence of the authors and in response to the suggestions
many other teachers and to the changing times.

" ;I‘hefnumber of easy exercises has been greatly increased. sh
sts of oral exercises have been added as a teaching device I
mtroductlon_ of certain new ideas to the students. -

The exercises and problems have been very completely chan

except in the cage of the rather uni
1 ique problems that have bee
leading characteristic of the hook. P



PREFACE vii

The treatment of the laws of exponents and radicals has been

moved from Chapters I and II to a Chapter VI so as to allow the
earlier introduction of chapters on graphic representation and
simultaneous linear equations.
" The new Chapter I is only part of old Chapter I and has been
given over entirely to material to be used by those teachers who
wish to stimulate thought at the very beginning of the course on
the theoretical side of elementary algebra. Those who prefer to
assume the facts of Chapter I without comment should begin with
Chapter II, which is a review of the elementary operations of\pré=
college algebra. ' .

The chapters on systems of linear equations, systems of equa-
tions involving quadratics, and the theory of equatidp¥’have been
much modified to make them more teachable. A\

The chapter on Compound Interest and Anmuftieyidhsmegihtary org.ir
as a chapter in a college algebra, not as a ¢h@pter in a text-book
on Mathematics of Finance, where extpmie tables are available
for the use of the student. No tables are-given in this chapter but
in connection with many of the exergiSes and problems the neces-
sary tabular values are given. . Ny

As in the Third Edition, thesstbject of probability is presented
mainly from the viewpoint “of statistical probability instead of
putting nearly all the em’j[ﬁhasis on deductive probability in rela-
tion to games of chanbe>

Following the practice in the Third Edition, we give the answers
to exercises and\'problems with odd numbers only. An answer
book is, howeyer, available giving the answers to the even num-
bered exexdises and problems.

The thanks of the authors are again due to many teachers who
havesgontributed valuable suggestions, especially to Professor
Rﬁée&e Woods of the University of Iowa for a critical reading of
‘ e‘manuscript of the Fourth Edition, and to Dr. G. E. Moore of
the University of Illinois and Professor S. E. Brasefield of Rutgers
University for suggestions during the preparation of the revision.

Q"

H. L. R.
A R. C.
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A LIST OF SIGNS AND SYMBOLS

+, read plus. —, read minus.

X, or -, read times. '

+, read divided by.

=, read 1s equal fo.

=, read 1s identical with. N
#, read s not equal to.
—, read approaches. ~,~\\\‘
<, read s less than. v
>, read 1s greater than. N

<, read s less than or equal to. A
=, read 4s greater than or equal fo. 4
a! or |a, read factorial a. K\
() Parentheses.
7 Brackets. Signs Qfaggregatlon These signs are used
{1 DBraces. to collect together symbols which are to be
Vinculum. tregt;é}m operations as one symbol.

¢\J

. Bar. \\

a,, read a subscript ¥, 0T @ sub 7.
',z . read\:cxprzme x second . . . respectively.
hm x, read lq\m@t of .
z—00, rea&tv becomes infinite, or x increases beyond bound.
logan, d logarithm of n to the base a.
la ]., read absolute value of a.
A Yead a to the nth power, or a exponent n.
\\/E, read square root of a.
Va, read nth root of a.
f(z), &(x), etc., read “ " function of z, “d” function of z, elc.
P(n, r) read number of permutations of n things taken r ot a time.
C(n, r) read number of combinations of n things taken r at a time.
(z, y), read point whose codrdinates are x and y.
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CHAPTER I*

INTRODUCTION

1. Numbers. In counting the objects of a group the child,\
makes his first acquaintance with numbers. These are the nums
bers called positive integers. O\

He next employs the number we call a rational fractiofi,,prob-
ably thinking of it first as part of a whole and later as the quotient
of two integers. O

Perhaps in the fall of a thermometer below zexoyth€ student had
his first experience in the use of negative numbers, exentifrhelesry.org
not taught to use the word negative. er{m‘ay also come early
to the convenient use of the negative nundber to represent debit
when the corresponding positive numperaeans credit.

To express the length of the di@génal of a square of side one
unit, or to find a number which{multiplied by itself gives some
integer, not a perfect square, 83y 2, be uses a number which is
neither an integer nor a rafional fraction, and employs a radical
sign to represent it by writing V2 where V2 X V2 = 2. Such
numbers belong to a\c{ass of numbers known as irrational numbers.
(See p. 63.) \

2. Graphical Zépresentation of real numbers. The four classes
of numbers mentioned in Art. 1 belong to the so-called “‘real num-
bers” uged\n arithmetic and algebra. They may be represented
by th,e\u'p%ihts of a straight line as follows: Let X’X be this line.
(Fighh.) Choose a point O on this line and call it the zero point

Aor origin. Adopt some unit of measurement OA.

N\ ’Beginning at O and proceeding in both directions, apply the
unit of measure to mark OX and OX’ at equal intervals, thus
forming a scale of indefinite length of which a part is shown in
Fig. 1. The positive and negative integers may then be con-
veniently represented by the points marking the intervals. Simi-

* Teachers who wish to emphasize the theoretical side of elementary algebra
should begin the course with Chapter I. Those who prefer to assume the facts
of Chapter I without comment should begin with Chapter II, which is a review
of elementary algebraic operations.

1
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larly, corresponding to any fraction % (a and b integers), there can

be constructed a point on X’X such that the fraction denotes the
distance and direction of the point from O. In fact, we assume
that by means of this scale we are able to represent conveniently

| —1
0o A
-8 ~7 -6 =5 —4 -3 -2 -1 1 2 3 4 5 6 8 ’
X/l Y I q I| Fi ) ; i é | ] 'I Fi 1 1 ? 14LX \
P A P R
Fic. 1 ¢\ \

'\

all real numbers, and we can say, to any point P on the ling] there
corresponds a number * which indicates the distance and direction
of P from O, and conversely, we assume that to ey gmreal number
there corresponds a point of this line.

In addition to the real numbers, we shall find it desirable to
deal with so-called “imaginary’’ and compléx’numbers. A graphi-
cal representation is given for these numbers in Art. 96.

ORAL EXEI'{GISES

1. What numbers are representegi:bj the following points?
(@) The point midway between" 4iand 5.

(b) Points of trisection of the interval — 3 to — 4.

(¢) Points of quadrlsectlpn,\of the interval 5 to 6.

2. State in words the\\\ltlon of points which represent ;, %a — Zy -2, 7

3. Suppose the scale’ of Fig. 1 represents the scale of a Fahrenheit ther- -

mometer; estlmaté the reading when the end of the mercury column stands
at Pi.t At P'\At point midway between O and P. At point midway be-
tween A and\P’

4. AS ure piece of paper of side 2 is laid on Fig. 1 so that one corner
of thersquare is at O and the diagonal lies on the line OX. The unit of measure-
ment “5f the square is the same as the unit in Fig. 1. What number is repre-

\se;xﬁed by the point at the other corner of the square which lies on 0X?
B. A circle of radius equal to two of the units in Fig. 1 rolls to the right

along the line in Fig. 1, beginning at 0. What number is represented by the
point at which the circle touches the line after one complete turn?

3. Greater and less. The terms greater than and less than
which are common to everyday life, when used in the technical

* For a more complete discussion, see Fine's Number System of Algebra, Second
edition, p. 41.

1 Py is read “P sub one.” See list of signs and symbols at the end of the
table of contents.
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sense of algebra, are easily misunderstood. For this reason we
point out their geometrical significance. The real number 4 is said
to be greater than the real number B (written 4 > B) if the point
representing A falls to the right of the point representing B.
The number A is said to be less than the number B (written
A < B) if the point representing 4 falls to the left of that repre-
senting B.
Exercise. Arrange the following numbers in ascending order of magnitude:

1, V2, — 4, — V3, 3V3 — 10, — 91, %:s\

4. Definitions and assumptions. Operations with nugiberé in
arithmetic suggest certain definitions and rules for algebra The
student probably has performed algebraic operatlons accordlng
to rules thus suggested by arithmetic without be)&g conscious of
the assumptions which underlie these procegsgs: wWe dBAN Iy or
proceed to a formal statement of assumptlon Jmade at the outset
in this algebra.

In algebra, a letter is used to represent a number. The value
of the letter is the number which it represents In the following,
let a, b, ¢ represent any numbers, A

The fundamental * operatlons of addition and multiplication
of numbers are subject to,theMollowing laws I-1X:

1. The sum T of two n?)bmbers is a uniquely determined number.

That is, given a\@nd b, there is one and only one number z
such that a + b 2\z.

II. Addition ’bS ‘commaudative.

That is, 3" a+b=>b+a

mustm{ioﬁ;’ 345=5+3, 4o+ 5z="5z+4z

1L M ddition is associative.

:Thatls, a+b+c= (a+b)+c—a+(b+0)
\ } Illustrations: 10 184+7=(10+3+7=10+@B+

IV. If equal numbers be added to equal numbers, the sSums are

equal numbers.

That is, if a =b,
and c=d,
then a+c=0b+4d

* The operations are fundamental in that no attempt is made to define them.
The “laws” are in the nature of assumptions since no attempt is made to prove
them. + The sum is the result of adding.
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V. The product * of any two numbers is a uniquely determined
number.

That is, given a and b, there is one and only one number y
such that ab = y. In this case, a and b are said to be factorsof y.

VI. Multiplication is commutative.

That is, , ab =

VII. Multiplication is associative. OV
That is, (ab)e = a(be). O K
VIIL. Multiplication is distributive with respect to addztum
That is, a(b + ¢) = ab + ac. 0

LV
Tlustration: 4(x + 2y + 42) = 4z + 8y + 162, \J

IX. If equal numbers be multiplied by equal Qumbers the products

are equal numbers. ¢

That is, if a=bh giv‘
and c = (?,» -
then ac =ybd:

The following laws X and X,I"’léad us to definitions of subtrac-
tion and division, and enakle:us to give meanings to the symbols

/N

s\ J

a 1
0; - a, 5’ 1, and B \\~

X. Given a andig,.fthere is one and only one number x, such thal
z+b=a N7

Subtr. c’ciqﬁ' 1s the process of finding the number x in z + b = a.
In othe;%éi‘ds, to subtract b from a is to find a number z, called
the remainder, such that the sum of z and b is a.
mB? X, the number z in z + b = a exists when ¢ = b. In this
\eaSe, the number z is called zero, and is written 0.
In symbols,
0+4+b =0 1)
From X and the definition of 0, there exists a number z, such
that
z+b=

In this case, z and b are said to be negatives of each other, and
x may be replaced by (— b).

. * The product is the result of multiplying.
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If b is a positive number, 2 is a negative number.
In symbols, (—B) +b=0 @)

gives a definition of (— b).

XI. Given a and b (b #% 0 *), there is one and only one number z,
which satisfies bx = a.

Division is the process of finding the number z in bz = a. <Jo™
other words, to divide a by b is to find a number z, calleds the
quotient of a by b, such that b multiplied by = gives a. D

'\
This quotient is often written %, and, when thus‘.v{r\i’tten is

called a fraction.
In dividing o by b, the number a is called the\dmdend and b

the divisor just as in arithmetiec. L1kew1se>~1n the ff’a’éﬁ’é"ﬂ‘l%r&ry or

is called the numerator and b the denom‘inator
By X1, the number z in ¢

br = a_ (b p: 0)
exists when b = g, so that axesy “u. In this case, the number z is
called unity and is written Inthat is,

N 2= ®)
N\

Further, by XIjand the definition of 1, there exists a number
z, which satlsﬁes bz =1 (b= 0). This value of z is called the
remproca]\&‘b and is written %

It, s’b\oﬂd be noted that, by means of XI, a meaning is given

to umty and to the reciprocal of any number other than zero n
! Thanner analogous to that by which a meaning is given to zero
\.4nd to the negative by means of X.

The above propositions I-XI are stated for two and three num-
bers for the sake of simplicity. It can be proved from the given
assumptions that these propositions hold when three or more num-
bers are concerned in the process of addition or multiplication.

Tt is not to be inferred that these propositions I-XT are entirely
independent of one another, but rather that they constitute con-
Wptions for the purposes of this course in algebra.

* The sign # stands for *‘is not equal to.”
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Although further assumptions are made later in the course, the
principles I-XI enable us to prove many important propositions
of algebra, and the wide application of algebra depends upon the
fact that many changes in the physical world take place in accord-
ance with these laws.

As shown in the following exercises, the operations of algebra
are generalizations of the operations of elementary arithmetic.

EXERCISES O\
: ¢\
1. Show that 2X 5, 3X 6 5% 8 —1X2 0X3, 11X 14,5% 3}
are all special cases of z(z + 3) and of (zx — H(z — 1). 4 ‘ )
9. Write an algebraic expression of which the products S‘X 7, 4X 8,
6 X 10, 12 X 16 are special cases. m})‘
3. Showthat 4 X 5 X 86 X 7 X 10,0 X 1 X 4,2 xgx’iy—%x%x%
are special cases of z(z + 1)(z + 4) and of (z — 3) (x\XJZ) (x + 1).
-5 0 7 16, ooy, 27 _ .
4. Show that - =~ 1, 5= 0, 7 = 1, A 3 are special cases
of———x2_9—x—-3
r+3 ) RS

In the course of operations,wi‘éﬁ the numbers of algebra, the
important question arises: Can any two given numbers be added,
subtracted, multiplied, q.l\divided? Our assumptions state that
the number system ofzalgebra is such that this question can be
answered in the affirm ative except in the case of division by zero.
Division by zero is excluded from algebraic operations.

AN
K7\ EXERCISES

1. Can, ‘aéy\two given numbers be added, subtracted, multiplied, or divided
if the’n’uﬁber system consists of positive integers only? Illustrate your
answers,

£\
3. Can any two given numbers be added, subtracted, multiplied, or
Xiv‘ided if the number system consists of positive integers and quotients of
positive integers only? Illustrate your answer.

8. Where is the flaw in the following?

Let z=a (z#0). 1)
Multiply both sides by =, 2 = az. 2)
Subtract a? from both sides, 12 — a? = ax — d* 3)
Factor, z — a)(z + a) = alz — a). 4)
Divide both sides by z — a, z+a=a. )
But, by (1), z=a. 6)
By (5) and (6), 2a = a. (7

Hence, 2=1
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5. Derived properties of the numbers of algebra. From the
foregoing definitions and assumptions, the following propositions
can be proved. We shall present in detail the proofs of only a few.

1. Adding a negative number (— a) ts equivalent to subtracting
a positive number a.

That is, b+ (—a)=b—a.
To prove this, let b + (— a) = z. (I, Art. 4.) (D
b+(—a)+a=z+ae @AV, Art. 4) (2)
But (—a)+a=0. (Eq. (2), page 50 3)
From (2) and (3) b+0==z+a. o @
But b+0=0 (Eq. (1), page YSINE)
From (4) and (5) b=z+a. (6)
b—-—a=2z  (Def. of subtractlon) )
That is, b+(—-a)=b—a " www.dbraulibrary.org
Iustration: 54+ (—4) =5—4=1" '

II. Subtracting a negalive number (—' a) 1s equivalent to adding
the positive number a. -

That is, b— (- @:;:’"b + a.

Iustration: 6 — (—j:2')':=‘"6 +2=28

II1. The product of twodumbers is O when and only when af least
one of the numbers is 07

COROLLARY. T]ze\q\wtz‘ent g is equal to O when a is any number
different from. 0;': 4
Illustralwm\ 100 X0=0, 0X25=0, 207 0.

Iv. Q&e product of a number a by a number (— b) is — ab.
TO “prove this, let

a(—b) =z (z exists by V, Art. 4.) (1)
\Then a(—b) + ab = z + ab. (IV, Art. 4.) @)
a[(—b) +b] = =+ ab. (VIIL Art. 4.) 3)
a-0=z+ab* (Eq. (2), page 5.) 4)
0 =z + ab. (III, Art. 5.) %)
—ab == (Definition of negative.) (6)
From (1) and (6),
a(— b) = — ab.
_ Tlustration: 3(—4) =-3-4=—12

* The - is a sign of multiplication, thus, 5 - 6 = 30.
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V. The product of (— a) by (—b) ts ab.
To prove this, let

(—a)(=b) == oy
(—a)(—b) +a(—b) ==z —ab. (IV,Art. 4; IV, Art. 5.) (2)
(= b[(—a)+al=z—ab. (VIII, Art. 4.) 3)
—b-0=2x—ab. (Definition of zero.) 4)

0=2z—ab (Why?) (5N,
ab = z. (Why‘?) . (6)

From (1) and (6), (— a){(—b) = \ N
Tlustration: (= B)(—7) = 35. \ >

P !

The statement that in multiplication Lke m’gns'"g;'ve :plus and
unlike signs give minus includes IV and V. "‘\

V1. The quotient of two nwmbers is positjve>tf the signs of the
dividend and- divisor are alike; negative zf Qéy are unlike.

VII. A single parenthests may be remvved when 1t 1s preceded by
a posttive sign without changing the’signs of the lerms within .

VIII. A single parenthe&is‘qi%’{z'y' be removed when preceded by a
negative sign if the sign of each term within it is changed.

Thatis, — (@+bee+d—e =—-a-b+c—d+e

Tltustration: 1b\> G-—2=10-5+2="1

IX. The valug qf a fraction is not changed by multiplying or divid-

ing both the.\nwnemtor and denominator by the same number, not
zero. :"\y

A\ a ax
Th@ﬁ\s, 7)' = H (x #= 0)
'"\ "J\i’il;,stmtionS' 3_3-4_ lg,
3 : 5 5-4 20
9 _9+3 _3
12 12+38 4

X. Changing the sign of either the numerator or the denominator
of a fraction is equivalent to changing the sign of the fraction.

°
—b
5.
-8

. - a
That 18, —b——' = —

I

wior SR

Ilustration: _TE’
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XI. Adding two fractions having a common denominator gives a
fraction whose numerator is the sum of the numerators and whose
denomenator is the common denominator.

That is, g_]_Q:a—i—b
c ¢ c
- b - b
Likewise, a_2_17
¢ ¢ ¢ A
- 7,3 _10 7_3_4 N o
Illustrations: 5 + 55’ 57575 O\
'S\
XII. The sum and the difference of two fractions are g@gr‘é&lsed by

_ad + bc a c¢_ad—bc N~
5 + i= " vd and 3 d- bd zf@pectwely.
¥www.dbraulibrary.org
We can reduce + 3 and ¢ to & common denoxtbmator since, by IX,
\\

3 2 3.3%2.4_9-8_ 1

e . .

XIII. The produdt\&f"two fractions is a fraction whose numerator
is the product of the, given numerators and whose denominator 1s the
product of theygivern denominators.

O3 a ¢
Thaf\is’\‘ T) . E = ‘BB"

XIV. To divide one fraction by another, invert the latter and then
Wfbatiply one by the other.

a

. c b ad

That is, %—}EOTE:E'
d

5 15

Illustration: g =+ g ; 1- 3%

Propositions ITI, XI, XIII, stated for two numbers in each
case, are readily extended to three or more numbers.



10 INTRODUCTION

ORAL EXERCISES
1. What is the product of 0 and any given number?

2. What is the quotient when 0 is divided by any number other than 0?

3. Explain why division by 0 is excluded.

Carry out the indicated operations in each of the following:

4. 5 —(—3). 32 z z 3 .15
12, 2= 7. 2 -2 22. 2 + 22,
5. 6z — (— 3z). —4 273 271 A
6. 50 — (1 —22). 13 — 52, 18, 2.3, 93 6 = 2.
" 3z 3 4 . . N
7. — (3 — 6b + ). O\
8. (—3)(— 4. 14. — bz 19. 2 + 3z 24. 6((’;:32‘
9. (— 52)(— 4) - 34 \.»~7 8
- - - . ,'5\\‘\’
10. (— 5z)(42). 15. % + % 20, 22 _ 32, 5l = 19T,
—~ 10 5 4 AV 8
1. —- 2 EEEERAS | a
t’\}"
~'\(./
O
O
N\
o
O8N
s\‘gz'
,{\
g\<\}
p
S\
&
I
)
~N



CHAPTER II

A REVIEW OF CERTAIN ELEMENTARY OPERATIONS
OF PRE-COLLEGE ALGEBRA

6. Introduction. In algebra as in arithmetic there are four fun-
damental operations — addition, subtraction, multipﬁcatiqr&',\aﬁd
division. In this chapter our main interest is in a review of’these
operations by means of their repeated use, especially i\ the im-
portant process of reducing certain algebraic expre;§§ith to simpler

forms. )
www.dbraulibrary.or

7. Algebraic expressions. In algebra, ap, expression is a sym-

bol or combination of symbols that regréjséhts a number. Thus,
22+ - 25
and gt + S
are expressions, if z, ¥, ¢, ¢, ‘v.'lréﬁresent numbers. If 2 = 4 and
y = 6, the first takes the value 27. If g = 32.2, ¢t = 10, and
v = 5, the second has tl]qvalue 1660. For different values of the
letters, an expressiongepresents in general different numbers. On
the other hand, tbe\sx‘xme numbers may be represented by many
different expressios. For example, 2> — 4 and (x - 2)(z + 2)
represent the’sime number. Expressions which are equal for all
values of jéééymbols for which the expressions are defined * are
called jdentical expressions. The statement that two identical
expredsions are equal is called an identity. Thus, 22 — 4 and
(2392)(z + 2) represent the same number no matter what value
\"k dssigned to z, and the statement

. 2—4=@—-2x+2)
18 an identity.

Two expressions may be equal without being identical. Thus,
forz = 2or — 5, the expressions 2% + 2z — 1 and 9 — z are equal,
but they are equal for no other values of z, and hence are not iden-

* This statement implies that we may not assign values to the letters which

T _ isexcluded whenz = 1.

1
make the members meaningless. Thus, 1= 1+ 1

11

-
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tical. Frequently in problems with which we shall deal, the work
is made easier by replacing expressions by identical but simpler
expressions.

Exercise. Which of the following are identical expressions?

32t — 3z 2 Qx2
s-1 ) e Tl o

333, (Iv + 1)(15 - 1)7

8. Use of parentheses. In a sum of a number of parts, each
part with the sign that precedes it is called a term. Thuyg, m
(Ba — 2z + 9) the terms are 3a, — 2z, and 9. N\

In order to group terms together, we use parentheses' - It should
be remembered that parentheses may be removed Wlth or without
change of sign of each term included, according as‘the sign — or
+ precedes the parentheses.

Thus a—(b—c)=a—b+,=é,,\:
a+ (b ~c)=a+bs~c

Expressions often occur with more tﬁaﬁ one pair of parentheses.
When one pair oceurs within another pair, other symbols besides
() are used as follows: [ ] called: brackets, { } called braces, and

— called the vinculum. All parentheses may be removed by first
removing the innermost p«‘r according to the rule for a single pair;
next, the innermost pal\r of all that remain, and so on. Thus,

o - § 4z — (y — 5) — @y + 6)])
—a—{ r—~4[zr—y+5—-2y —6]}
> {8z — 4z + 12y + 4}
:~=%}a+ z — 12y — 4.
N
EXERCISES

\Remove the parentheses and other signs of grouping from the expressions

Yo the first eight exercises.
1. 42 — 5 + (y — 22) + 8(y — =).

. — [2z + 3 — 4x)].
- (t—2)—-[2t— (¢ — 3)]
2z — (8z — a) — (a — 2z).
7s — [— 8 — (10s — 11)].
= {(8a — 2a) — (¢ + 2)}.
. 6m — {2m — [(m + 2m) — (2m — m + 1)]}.
s —pte—fr—[@—g+r —(—p+e¢—-nl

oa-as».m:'*s»m
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In each of the following four expressions, inclose the last three terms,
first in parentheses preceded by a plus sign, then in parentheses preceded by
3 minus sign.

9. 7+ 3t+ 5y — 7. 11, 5+ 22z + 4 — 5y.
10. a — 2b + 3¢ — 4d. 12.a+btc—2z—-y—ua
13. Find the value of the expression

52— Bz +(—4z-1—-23)+1—(—3—12)]

when z = 2. &
14. Find the value of the expression K >
R2e+y) —y@-]-R2C-»+ty2+v]l
when y = 7. g ™

Fill out the parentheses in the following: AN ?

2% 2

15. 40 — 3b + 2 — ( =a-+b 'M,\"
16. 6m +4n — 3 — 5m + n — ( ) =1 g

rauhbrary org

9. Factoring. Many algebraic expressmns\are read%y? ctored
when certain type products are recogmzkd The student will
probably recall the following from his stuciy of hlgh school algebra.

a. Common monomial factor. j.’ N \\

ax+ay,—a(x+y)

Tllustration: 2am — 4a? = 2a6m — 2a).
b. Difference of txo\squares

(¢ -0 = (@+b)a—b).
Ilustration: gh;:n 21 = @ + 1)z — D).

AY, r?

¢. Pe fec{: “4rinomial square.
O a@* + 2ab + b* = (a & b)%
qustratwn 422 — 12zy + 92 = (2z — 3y)-
\ d Trinomial of the form
x2+ (a + b)x +ab = (x + a)(x + b).
Ilustration: #* + Tz + 10 = (z + 5)(z + 2).
- €. Trinomial of the form
ax® + bx + c.

Certain expressions of this form can be factored by inspection.
Ilustration: 22* 4+ 5z — 8 = (2z — 1)(z + 3).
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f. Sum of two cubes.
@+ b* = (a+ b)(a® — ab + b?).
Tllustration:
12525 4 8y = (522) + (2y9)% = (52 + 24°)(252% — 10z%5 + 4y0).

g. Difference of two cubes.
a® — b = (a — b)(a®+ ab + b¥). 7\
Iustration: méy® — 2Tn® = (my — 3n%)(m¥? + 3mnly - 9nd). A ¢

h. Factors found by grouping.
ax 4+ ay + bx + by = (a+b)(x+y)§’ A
Tlustration: m'\ v
2az + 4bx — 3ay — 6by = 2z(a + 2b) — 3y(a + 2b)\a (2% — 3y)(a + 2b).
i. Cube of a binomial. By performing’.jbhe multiplication, we
find that : ,\
(0 + b)* = a® + 3a7H }"3ab® + .
Iustration: 823 4 362%y + 54&109«iz ’-};“ 273
(22)* + 3 - (22)%:8y) + 3 - (22) - By)* + (By)*
@z + 3. AN

The student should ﬁQd the cube of @ — b.

j. Expressions tlfs@*can be reduced to the form of the difference
of two squares, ()

Ilustration A Factor 4zt + y*.

By the, a&td\.ition and subtraction of 4x%y? we have

‘.\\w' 4t + ’_1/4 4zt + 41;2 2 + yA —_ 4:172?/2
A\ = (222 4+ y2)? — 4ay?
NS = (22* + 3 — 2zy)(22* +¢* + 22y).
a \¥/

) Ilustration 2. Factor a* + 3a%? 4 36b%. Find two factors only.

Since the expression a* + 3a2? + 36b* is a trinomial in which a* and 36b*
are perfect squares, we compare the middle term, 3a??, with the middle term
of (a? + 6b2)2 = at + 12a%® + 36b%. If 9a?? be subtracted from this expres-
sion we have a* + 3a2? + 36b.

Or we may write

' at + 3a?h? + 36b* = at + 12a%* + 36b* — Qa2h?
(a? 4 6b%)% — (3ab)?
which is the difference of two squares and can be factored as

(a? + 6b2 + 3ab)(a? + 6b* — 3ab).

[}



FRACTIONS 15

ORAL EXERCISES

Practice in Factoring Expressions Which Reduce to Important
Type Products

Factor the following:

I B R S

. 3azx 4 6a2.

4a? — y2
3622 — a2
922 + 6bz + b2,

. a? -+ 4ab 4 4b2.

x? — 4oy + 42

. ylx — 8) — 5(z — 8).
. (2 — ¥)? — az + ay.

WRITTEN EXERCISES
Practice in Factoring More Complicated

9. 15(z* — zy) — 10(zy — 4.
10. 254% — 90y + 81.
11. 28 + 32% + 3z + 2

12. & — 32% + 32y — 1. QO
13. 23 4 88 ‘.\:\'
14 23 — 8y N
16. 422 — 122 +9. A\ 7
16. 22 + 172 + 72. o\ )

N\

Expr;essionsdbraulibrary.org
R
B. 16255~ da2.
6. 4@@4—’ Txy + Sy
N 222 + 15 + =z

w\ 8. 252%? — 30zy + 9.

Factor:
1 4zt — gt
2. (@ 4+ b): — (@ — b)2
3. 162* + 4y*. Find two factors.
4, 52 — 125 + 35. &
9. 15ay* — 1lay + 2a. Find thréefactors.

10.
11.
12,
13.
14,
15.
18.
17.
18.

@+3)2+2z+3) + 12
y? — (b + k)2 i‘~>
2* + day + 4y — @2 <<’2Zzb — b

9a% — 6ab + b* 25z — y* — 10zy.

4zt — 20272 :{-\%y‘*

¢+ 2?2 + ,KHmt Add and subtract z2

92t £ L 4.
o edgd”
hag}: 2

19027 — s

NN

\20‘e

21,
22.
30.
31
32.
34.

u* 4 1000.

8af — 122% + 6xy? — ¥*
z® — ¢85 Find four factors.
212% — 142% — 56xy2.

23. z* — 5. Find two factors.

24. (@ — b)t — (a + D)~

26. (z+y)»* — (& — ¥)*

26. (z + )+ (@ — y)*

o27. (z+ )t — (& — ¥

28. a4+ b+ a4 b

29, a® + 2ab + b* — 4a — 4b 1 4.

2(x — 8)*(2z + 1) — 3(2z + 1)z — 3)~

(@ —2b + ) — (2b — ¢ — 3a)2

day — 4a? + 22 — 2

83. ac +d — ¢ — ad.

10. Fractions. In high school algebra, the studel}t has Iearne.zd
to add, subtract, multiply and divide simple fraetions. But in
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order that he may regain his facility for carrying out these funda-
mental operations he should recall the following important prin-
ciple.

The value of a fraction is not changed by multiplying, or dimding
both numerator and denominator by the same number, not zero.
(See IX, Art. 5.)

Tlustration 1. Reduction of fractions to lowest terms.

9 9+3 _3 1lba%% _ 3z, 4x—4y 4
Thus, {5=13x3~ 20a*zy ~ 4d’ ¢ T T4y .\:\’
IMlustration 2. Reduction of two or more fractions to a common der\xb?ninﬁtor
in addition or subtraction. A
Thus, .
3 2 9 8 1, 1 1 a+b ~.V\b 2a

Zggﬂl_i_ﬁ_m’a—b+a+b=a2—b2+a2'——b'*‘ @B

In this connection it is well to recall the dequ‘tlon of a reciprocal.
(See X1, Art. 4.)

DerFiniTiON. The reciprocal of a, .number, say of N, is the

1 1
fraction ==+ Thus, the reciprocal of 8is = ; of ¢ 1s b,
N * “.. v 3 a
ORALUEXERCISES
Give the reciprocal of eachof\the following:
3 " v
15 2:0.5. 3. 1 -1
5 \\ 5. ' 4 -1
5. What number has no reciprocal?
6. Change g:bo’jaﬁfractim whose denominator is 24.
Reduce teilov;est terms:
7. 20007 g Ot ab o
—5 T @ u P
N 25a3b3c y—2z (@ + bzt — 42
W& =557 10. 2 —- BTN T Y,
Q~ e W= N T

WRITTEN EXERCISES

Practice in the Simplification of Fractions
Reduce to lowest terms:

p la—=0G—y 4 222 —1)
(@ = b= — ) * 5(b — 2a)
at — b -2 — 2

P b T

3. T~y 8z — ¢

?—ytz—y "y — 4oy + 42
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Combine into a single fraction:

7,1 4 s+5 3s+ 7
5Tz 5 U= w—9
2 - 2 * 3t
S,m—f-a_l_b- 12.5+t—_—2+4t~
3 3z z?
9. - - : -
z+y 22+ 22y + 32 18.2+7 z -7
-9 4 5 2—z z—4
0. = ' : y
1 7(:0—2)+ -4 14 x2—9+x2+x—6+:c2—7x+12 N\
Simplify: 2 ‘\\ A
15. 20 -2 b 19, a? — b2 . @+ab K
at+b a-—2> (e — b)? a—b \ N
6. 2=0._b . g0, P4z L3042
‘a+b a2 —b 'xz+5x+6'.z2+2x—3
17 z(a? — ) y(a? + 93 21 @t = b aas_i_ bz
Tty z—y (@— b wg/bw dbraulibrary.org
8, P 2=y 2o pOREAE L e
"X Ptay @—yR 42:\ 12

11. Complex fractions. A complex fraction is one which has a
fraction in the numerator or denommator or in both numerator
and denominator. The rules fox ‘r.he 51mp11ﬁcat10n of arithmetical
fractions apply to algebraic iiractlons no matter how complicated
the numerator or denommator may be.

" The main principle is.fhat the value of a fraction is not changed
by multiplying n exétor and denominator by the same number.

As illustrated by, the following examples and exercises on com-
plex fractions, & »simplification is often brought about if we select
for the number*by which to multiply, the lowest common denom-
inator of ﬂl;no%ractlons which are in the numerator and denominator
of the &mplex fraction. .

Example 1. Simplify the complex frac’mon —

2] coo

\ N\ Solutwn Since 12 is the lowest common denommator of the fractions in

the numerator and denominator of the given fraction, we multiply the nu-
merator and denominator of the given fraction by 12. We have

3-3 _123-3 _8-6 1

1o 120G-4 0-5

2
L ab(at — 0| § + 5]
Y 5t axb]
T 1 1_ 1
(; ab(a’ it b’)[a

a—2b
a(a? — b?) + abla — b) __ ala® — 2b* + ab)
= (@ — ) — abla + b) B(a -+ b)

=2
1

Ezample 2.
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EXERCISES

Simplify the following fractions:

b1

ofen

13.

|
asleo

[\

—

Q
+ +
il = o

SR o
+ o+
.‘QIH Qi

SIS
|
e — w8

+1

1
100 — a—zl;i
1 .
2a — 5‘5
o\
O
N\
(\s
S\ W
J

14,
b ¢
a's
15, 30b +3A§)ac'
4+ =

1 1
T4+ \

2 Y
o SPAN
Itzta

4a? — 9y2 O
227y + 3%/"\ :
~N

I+U'x—y
T Y +x+y'
Xy _z—y
:c—y :v+y

u19@m5w—mw+@—ﬁ?q

17.

18.

1+5 1+x’.
1

2

20.

1

z
4a2 + 3a
1+a+2
a1, 3a — 2
_Ta+14
40 — 1

— 3a2

(a’ 10
o4, 0
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MISCELLANEOUS EXERCISES AND PROBLEMS
Remove symbols of grouping and simplify:
1. 72—[—8y—(10z—11p)] 2b—{8a—[e—2—-a—2]—-2}
Inclose the last two terms in parentheses preceded by a plus sign; by a
minus sign:
8. x*+4x — 16 4 y2 — 8y. 6. 32 + 6z — 2y + 8.
4, 22 + 8z — y + 10. N\
Inclose the terms containing y in parentheses preceded by a plus sigoj\by
& minus sign: ) \' ‘~,\
6. zy — 2x 4 4y. 7. 22?2 — a22® + ay? 8. z® + zy? —I—,' ag®’— ayt.

Factor: RO
9. 2% + 2715 11 ot + 2zt + yj:'\ O
10. az® + 5az — cx? — Scx. 12, = 4+ 4. )
Simplify: O www.dbraulibrary.org
mt — 4 L/ SR
13, mn — 2, 16. o\ z+1
m + 2mn Y- L
m? + 4n? ,.’." - z+1
i S
14, 7 . A\ 17. g
P-pat+n+a L ab
Ltttz O U S
15. 2 . K\ 1. 81y _Fo¥ oy
81‘—1—5_2 A z+y_z—Y
222 r—y =x+vYy

19, A tells B ‘t;} think of two numbers each less than 10, then to multiply
one of the ndbérs by 5, add 4 to the product, multiply this sum by 2, and
add the<ofher’number. B announces the final result of this computation
and A '&‘Aédiately tells him what two numbers he thought of. A does this
by mé‘gtally subtracting 8 from B’s result. The number then obtained is a
twosdigit number, the digits being B’s two numbers. Show the algebra under-

<I§§ing this trick.
Hint: Let z and y be the two numbers.

20. Make up another trick like that in problem 19.

Evaluation of Formulas Involving Fractions
21. The present value P at simple interest of a sum S due in n years at
interest rate ¢ per year is given by the formula
S .
1+ ne

Find P when § = $1000, n = 5 i = .05.

P =




B
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22. The speed » in feet per second of a projectile of weight w pounds, and
diameter d inches is given by
1 1 td?
v

where v,* is muzzle speed with which the shell is projected, and ¢ is the number
of seconds after leaving the muzzle. Find v when v, = 2750, t = 5, d = 14,
w = 1200.

23. H = —82—5(T “"’{)

Find H when T = 390, w = 0.7, g = 32.2, and v = 88. <O
(P+3)e-v O

NT=""p— P\ 3

£
Find T when a = 1322, b = 0.01969, R = 36.24, » = 15’9}1 P = 11100.
26. The specific gravity S of a floating body is an by the expression

w1 + (’wz — ’wa) \
where w; is the weight of the body in air, ws, is'the weight of a sinker in water,
and w; is the weight in water of the body wi‘th sinker attached.
Determine the specific gravity of a T:)ody when by physical measurements
it is found that ™

~

AL L) 17.36
“\wi = 193.7
’Mi\ w; = 186.8

7\
\

26. One cubic cent‘imt%r of mercury at z degrees centigrade increases in
volume when heated-to ./ degrees by an amount given by the following formula:

A/ A )
:.\’“.’ y—z
:»\:. 100 ,
\\"’ 1+ _fii_x

™
3

Whei‘a % = 0.018. Find the increase in volume when the temperature is
%myed from 11° to 127°.

27. To correct a barometer reading for temperature the following amount
is subtracted from the reading:
m(t — 32) — s(t — 62)
I+ m( = 32)

where B is the barometer reading in inches, ¢ the temperature in degrees
Fahrenheit, m = 0.00010, s = 0.00001. What is the corrected reading of the
barometer when the temperature is 86 and the barometer reads 30.15?

* A letter with a subscript, say a, is read, ‘‘a sub .’
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28. Let P be the day of the month, ¢ the number of the month in the
year, counting January and February as the 13th and 14th months of the

. N N
preceding year, N the year, and n = [m] - [m] - 2.

1t P+QQ+[§(q—;_—D]+N+[%]—n

be divided by 7, the remainder will be the day of the week of a given date
where Sunday counts as the first day. The expressions in brackets mean th‘e\
largest integer contained in the inclosed number. Verify this formula fo
the present date. € >

29. The formula for the horsepower H.P. of an automobile:exi‘gine'is
N/

Planc , AA
{24) (33000) "G

given by H.P. =

where P is the pressure in pounds per square inch, 1 ig bhe Tength of stroke

of the piston in inches, @ is the area of the end of the\pigten in square inches,

n is the number of revolutions of the flywheel per inute‘;VW‘i@dﬁE' atihiteary .or
of eylinders in the engine. How many H.P. are ideveloped by a six-cylinder
engine if P is 74, L is 5.5, a is 15.56, and n is12602"

N\
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CHAPTER III

FUNCTIONS AND THEIR GRAPHS

12. Constants and variables. A constant is a symbol which \
represents the same number throughout a discussion. A variable
is a symbol which may represent different numbers in the discts-
sion or problem into which it enters. Many mathematlcal expres-
sions contain both variables and constants. ExceptMn' certain
geometrical and physical formulas it is customary towuse the letters
a, b, c, . . .from the beginning of the alphabetfor constants and
the letters .- . . z, ¥, 2, from the end of the alpb’abet for variables.

Exercise. If A and B are two pointsin a plan}~ and a point P moves in a
circle about A as a center, which of the dlstanbes PA PB is constant? which
variable?

o,’
"

13. The function idea. Many problems in mathematics, phys-
ics, engineering, and chemistry*involve two variables which are
so related that, a value of efie being given, the other can be found.
The relation between jube,\variables may be exhibited in various
ways. Sometimes the values of the variables are arranged in the
form of a table. #'er example, a life insurance agent refers to a
table to find the{premium corresponding to a given age. Here the
two variables,aré “premium’ and ‘“‘age.”

In algelfa“one variable may be connected with another in an
equatiof™or one variable may be an algebraic expression contain-
ing thesother. In the equation 3z — 5y = 4, if a value be given
fe, fc\the corresponding value of ¥ can be found Thus if z = 0,
yﬁ g;lfx—ly——5,andsoon

Inevaluating theexpressiona? + z 4 1, we find thatz?+z +1=1
whenz = 0,2?+ x4+ 1 = 3 whenz = 1, and so on. Fixing the
value of z in the first illustration fixes the value of y; in the
second illustration fixing the value of x fixes the value of 22 + z + 1.

DEeriNiTION OF A FUNCTION. If two variables are so related that
when a value of one is given, a corresponding value of the other is

.determined, the second variable is called a function of the first.

Thus in the equation 3z — 5y = 4, y is a function of . The
22
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expression 22 + = + 1, and in general any expression containing
z, is a funetion of . We may therefore and shall speak of a “‘func-
tion of z” instead of “an expression involving the variable z.”

14. Functional notation. The symbols f(z), g(z), ¢(), . . .
are used to represent functions of the variable z. For example,
let f(z) represent z* + 32* — 2z + 10. The symbol f(z) is read
“the f function of z.”” Similarly “¢(y)” is read ““the ¢ function

) 143 3 3 b3 \
of y,” (pronounced “phi function of ).

To illustrate further, suppose that in a discussion O\
flz) = 32* —2c + 1, O

then f2) =8-2-2-2+1=09, ~\
and fa) = 3a* — 22 + 1. 2

Similarly, if g(z) = 2* + 4z, O bl
then g(b) = b + 4b, O www.dbraulibrary.or;
and g(3) =32 4+4.3=2L"7

(= 2) = (-2 + 4D = — 4

These illustrations bring out an\important point in the func-
tional notation, namely: If the*same functional symbol, say
g(), be used more than once, fn' discussion, it stands in each case
for the same operation orset of operations on the number or ex-
pression contained in, the parentheses of the functional symbol.

s\ J

™
X \ ORAL EXERCISES

Express in w;oia;s 'éxercises 1-4.
1 A=jeh) 2s=F@. 3y=0@ Lw= H(u).
5. Ti ()< 52 — 3, find £(1), @), f(— 2, fO).

6.3 7() = 2 + 95 — 3, find PQ), FOO), F(3), F@, F(= .

¢ S\
/7N ?

") WRITTEN EXERCISES
LTt g = & — t — 1, find 95, #010), §(— 10), 6 = 1.

— 1
2 1 H@) = 5252 find HO), HE), H(= 2, a(3) HO+D.

3. The fact that the area, A, of a circle may be calculated from the radius,
7, is expressed in the functional notation by 4 = f(r). Give the particular
form of f(r) in this case.

4. If V = F(r), where r is the radius and V is the volume of a sphere, give
the particular form of F(r).
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+ 1

5. If F(s) = 25— find F(3), F(— 1), F(®), F ( > F(s?).
6. If f(z) = 2° + 32% and F(z) = 22 4 4z — 3, find the quotients %
F(2)

and 7y

T It ¢(@) = 211, find 6(2), $(0), $(VD), 9 + D).
8. 1f Fle) = o ~ 8% find F(2), F(V®), F(L), P(V2).

9. Given y = f(z) = :c + 11 - Show that f(y) reduces to . (\)
_ 8
z+ 2 « M
10, If F(z) = +4:ﬁnd F(F(z)). AN

15. System of cotrdinates. Let X'X and ¥'X bé:two straight

lines meeting at right angles. Let them be gonSidered as two
number scales with the point of intersectionsas/'the zero point of

Y each. Let{P*be any point in the

i plane. *Fyom it drop perpendicu-

I +s3 1 lars_to.the two lines. Let z rep-
P__1o2 resént the perpendicular to Y'Y,

1 Jand y the perpendicular to X'X.

z
Y T $
=32 i‘.l 1 2 8 < If P lies to the left of Y'Y, z is

O___l to be considered negative. If P
e\J lies above X'X, then y is positive.
m 12 \ It is clear that no matter where P
120 is in the plane, there corresponds
N to it one and only one pair of per-
“"}.?"r\Yz pendiculars, z and y. The lines

G

of reference X’'X and Y'Y are
called the coordmate axes, and their intersection is called the
ong;n\ “The first line is called the X-axis, and the second the Y-
gis"The perpendicular to the X-axis from a given point in the
&aﬁe is called the ordinate or y value of the point. The perpen-
dicular to the Y-axis is called the abscissa or z value of the
point. The codrdinate axes divide the plane into four parts
called quadrants and are conventionally numbered I, 11, III, IV
as in Fig. 2.

If we have two numbers given we can find one and only one
point P which has the first number for its abscissa and the second
for its ordinate. If, for example, the numbers are 2 and — 5, we
measure from the origin, in the positive direction, a distance 2 on
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the X-axis and at this point we erect a perpendicular and measure
downwards a distance 5. We have then located a point whose
z is 2 and whose y is — 5. This point may be represented by the
symbol (2, — 5). The symbol (a, b) denotes a point whose abscissa
is @ and whose ordinate is b. The symbol P(a, b) is sometimes
used and is read, ‘“the point P whose codrdinates are a and b.”
When a point is located in the manner described above, it is
said to be plotted. 1In plotting points and obtaining the geometri-"
cal pictures we are about to make, it will be convenient to use, co-
ordinate paper, which is made by ruling off the plane intd, equal
Y .

73

dhralilibrary .org

XX " x —x

Rk 1
{ \ Fic. 3

squan\siwith the sides parallel to the axes (Fig. 3). Then the side
of a\Square may be taken as the unit of length to represent a num-
bérd To plot a point, count off from the origin along the X-axis

{"“t¥e number of divisions required to represent the abscissa and from
the point thus determined count off the number of divisions par-
allel to the Y-axis required to represent the ordinate. 1t is often
convenient to take more than one side of a square for a unit of
length, or to make one side represent several units.

ORAL EXERCISES
1. In what quadrant does each of the following points lie: (1, 2), (‘— 1, —~2),
(8, —4), (— 6,77
2. In which quadrant are both codrdinates negative?
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3. A line is horizontal and cuts the Y-axis at a distance 5 above the origin,
What can you say about the ordinates of the points on the line?

4. For what points is the equation z = 4 true?

B. A line is bisected by the origin. One end of the line is the point (— 6, 9).
What are the codrdinates of the other end?

6. Aline connects the two points (0, 0) and (4, 4). What are the cotrdinates
of the mid-point of the line?

7. Describe the line each point of which has its abscissa and ordinate equal
to each other but opposite in sign.

8. The abscissa of each point of a line is twice the ordinate. Describe,the
line. ‘\' N
WRITTEN EXERCISES g B

1. Plot the points (2, 3), (— 2, 3), (— 2, — 3), (2, — 3), (5,0),%— 7, 2.

2. Draw the triangle whose vertices are (3, 5), (— 4, 4), I, {~ 3).

3. Draw the quadrilateral whose vertices are the points, (0, 0), (1, 4),
(— 1; 6)1 (_ 4) 0) \

4. A line joining two points is bisected at the point Q*,'O). If the codrdinates
of one end are (8, 5), what are the cosérdinates of‘ibe other end?

5. Three corners of arectangle are (— 1, 44/ 4), (4, — 5). What are the
codrdinates of the other corner? \

6. The codrdinates of the vertices ofua .triangle are (0, 0), (6, 0), (4, 4).
What are the codrdinates of the mid-p8ints of the sides?

7. Let the X-axis represent an ,e}iét and west line, the Y-axis a north and
south line. The general course of the river is indicated by the following
codrdinates of points on the river: (— 6, — 2), (— 5, — 1.9), (— 4, — L.7),
(_ 3, — 14)) (_ 2, — 1'0).7.’ -1, — '5)y (©, G)y (1) 13)7 2, 2.1), 3, 3),
4, 4), (5, 5.1), (6, 6.3). \Map the river fromz = — 6toz = 6.

16. Graph of @ function. By a method analogous to that em-
ployed in PI‘O]ZE.~\7, Art. 15, a function may be represented with
reference o goordinate axes. This representation of a function is

called thegraph of the function. The graph of f(x) gives a picture
of the}:changes in f(z) as « changes.

«\E’“.)cample Obtain the graph of ga: + 4 for values of x between — 5 and + 5.
Let fl@) = %:c + 4. The object is to present a picture which will exhibit

the values of f(z) which correspond to assigned values of z. Any assigned
value of z with the corresponding value of f(z) determines a point whose
abscissa is  and whose ordinate is f(z).

Assuming values for z and computing the corresponding values for f(z),
we obtain the following table.

= |0[122) 8] 4)5)~ 1)~ 13 -2 -5 —4)—5) = 3] § |1
s@lalslrlalaelolal s T2 1 [—3—2/ "= |2
h These corresponding values are plotted as codrdinates of points in Fig. 4.

[

=y
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It should be noted that there is no limit to the number of corre~
sponding values which we may compute and imagine plotted in a
given interval along the X-axis, and further that to small changes
in values of z there correspond small changes in the values of f(z).
These facts suggest the idea of a continuous curve to represent f (z)
much as a continuous curve is used in mapping a river. (Prob. 7,
Art. 15.)

It must not, however, be assumed that all functions give cofis,
tinuous graphs; Art. 17, below, considers a graph made up ‘of
isolated points. The important fact for this course in algebra is
that we may assume a continuous curve for all functions Swhich are
polynomials in z * and for most other functions whieh occur in
this course, although the proof of continuity is héyond the scope
of this book. That is to say, it is proved in higher analysis that a
function of this type \

~
age® + aixt + -+ + an (n alpositive integer)

.
AN

has a continuous graph. QO

Hence, in finding the graph oft 3, polynomial, when a sufficient
number of points are locatedtto ‘suggest the general shape of a
curve through them, drawah smooth i)
curve through the poifits. In par-
ticular, it is provefi‘"ib analytic ge- y
ometry that when<= 1, the graph of
a function of thiS%ype is a straight line.
In the problefdsin hand, the graph is

the straight-line shown in Fig. 4. 4
2 'QtQ 2
17..§§‘unction defined by a table of i X
K 4 X O 1zla 45
valites. Much use 1s made of sys-
:‘q‘eiﬁs of codrdinates in presenting sta- j’
) tistical results when one set of data
is to be compared with another set. Fia. 4

The following infant mortality
table is made up from the United States Life Tables of 1910. Out
of 100,000 living newborn babies in each class, it shows the number
of deaths during each month of the first year.

* By a polynomial in z, we mean a function of type
agz” + mz* 7+ o aa

where n is a positive integer, and a0, 61, ***s G» do not contain z.

www.dbraulibrary.or
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Using the numbers of the months as abscissas and the corre-
sponding numbers in the column headed *City Males” as ordi-
nates, we locate the upper set of points in Fig. 5. The vertical unit

5000
4500
!
4000 1 N
AN
8500 A\ N
3 A
8000 (.:.‘.
2500 )
..,\#\
2000
1500 ) ——
N
3 £/
l)\“\ { &
1000 . Ci v
~ %
wL\\‘Eu.\“ 'l’lfales
500 i e
Y Bural Males| Y
& N
O 1 2 38 4« 6 &57 8 § 10 1 127

Fia. 5. ——Graphicai \representation of infant
mortality,©Of city and rural males.

is 500. The lower sg\iof points is given by the column headed
“Rural Males.” In Fig. 5 we thus present to the eye the relative
infant mortality.\’o'f “¢ity and country children.

MoNTH OF "\”’V\Vm'm ‘WHITE NEeGro NEGro Ciry RURAL

Firsr YE’A\ M/ Mavres FEMALES MALES FeMALES MaLgs MaLEs
AN 4844 3787 7370 6380 4969 4570

‘ "\: w2 1242 991 1977 1746 1370 997
N/ s 1012 850 | 1831 | 1555 | 1001 822

4 863 740 1695 1394 941 699

5 750 648 1561 1252 835 595
! 6 673 578 1425 1134 755 515
| 7 610 526 1290 1036 694 459
I 8 553 486 1153 948 640 408
‘ 9 503 450 1037 874 586 363
10 457 421 937 800 537 325

11 420 390 857 725 496 296

12 399 359 802 663 466 277
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The graph in this case is made up of 12 points. If we look upon
the number of deaths as a function of the number of the month,
this function is defined at only 12 points. The lines connecting
the points in the figure are not necessary, but aid the eye to take
in the whole situation. Where two sets of data are exhibited in
the same diagram as in Fig. 5 the connecting lines prevent con-
fusion of the two sets of points.

QY
EXERCISES .
Plot the graphs of the following functions. R \)
1.3:+4 2 5z—2 3. 3z. 4z O
5. +V25 — 2. N
Solution: We find the following table. ’\\

2=0] 1| 2[3[4]45 |5|(§rbaterthan5

Vas w5 | 4946432180 Tragmarg oulibrary.org
p=—1]|-2|-38|—4] <45 | = 5 | Less than — 5

Vo 40| 46| 4 | 3 @218 | o | Tmaginary

S\
Plotting these points and drawing:& sithooth curve through them, we have

Fig. 6. V25 — 22
6. —V25 = 22 _4
7. V49 — 22 RS L
L V16 — & LN )
8. +V16 — & \\ Ve \
9. 22 — x — 20 M S 3

10. 22 — 9. /™ / 1

11, 20 + 457
12, aag%\—'k. r + c.

whena =2, b=1,
..s:{q% = 3, . [ }’x

p .\’f % (b) whena = —2,b=—1, Fia. 6
a\ 7 ¢c=—3. 3 i
1 i
\ } (Plotpoi!ltsforx=0,%y 1,%:2,—§v—1,—§r -2)
1 3 3
13, % (Plot points for z = 3 %r 7Ly 235 10.)

14, From the table on page 28, show graphically on the same diagram the
infant mortality of “white males” and of “negro males.”

15. Exhibit graphically on the same diagram the infant mortality of ‘white
males” and ‘‘white females.”

16. Exhibit graphically on the same diagram the infant mortality of
“‘negro males” and ‘“negro females.”
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17. The breaking strength of ordinary manila rope is given by the formula
B = 7100 D? where B is the breaking weight in pounds and D is the diameter
of the rope. Exhibit this formula graphically for the diameters l: Srzrs352,
1, 13, 14, 18, 1%, 18, 1%, 1%, 2 inches.

18. The following table taken from a jewelry catalogue gives the price of

diamonds of the same quality for various weights. From this table give a
graphical representation of the price of diamonds.

Weight in carats [0.15]0.201]0.25]0.30]0.35|0.40 | 0.45 | 0.50 | 0.55 | 0.6Q
Price in dollars 30 [ 40 | 50 | 65 | 80 | 95 | 110 | 130 | 150, \170

"N
Weight in carats |0.65[0.70 | 0.75 | 0.80 | 0.90 | 1.00 | 1.25 | 1.50 |.1%25 | 2.00
Price in dollars | 190 | 210 | 230 | 250 | 285 | 325 | 400 | 500|600 | 700

19. The morning and evening temperatures of a pneu;m)\.ni'é, patient were
as follows: 99°, 103.2°, 105°, 103.6°, 104.2°, 105°, 104°\¥05°, 103°, 104.2°,
102.3°, 97.6°, 97.4°, 98.2°, 99°, 98.2°, 08.7°, 98.4°. ‘Givé a graphical repre-
sentation. g* ‘\

Hint: To save work in handling large numbexs’,}SO may be subtracted from
each of the above numbers and the difference§ plotted. Or ““degrees of fever”
may be plotted — that is, degrees above 98:@3"."

20. The trend of gasoline consumpﬁiéli in the United States from 1919
through 1936 is given by the equation **

y =2532 + 951.2z
where z is the time in years ‘me?asured from 1918, y is the annual consumption
in millions of gallons. eﬁ{esent graphically.

21. If F represents/the length of a man’s foot in inches and s is the size of
the shoe, then \
A\ ¥
o y \.“
Represent, graphically the relation between length of foot and size of shoe
for sizegd ‘to 12.

22, Fhe postage on first-class mail matter is three cents per ounce or
fra»ét;'i}m thereof. With weights for abscissas and number of cents for ordinates
Cexhibit this postage rate graphically.

8
F-§+8.

18. Zeros of a function. By a ‘‘zero of f(x)” is meant a value
of z such that the corresponding value of f(z) is zero. Thus 3 and
— 1 are zeros of the function 22 — 22 — 3, and % 5 are zeros of
V25 — z%. Stated graphically, the ‘“‘real zeros of f(z)’” are the
abscissas of the points where the graph crosses the X-axis. In Figs.
6 and 7 the graphs and the zeros of V25 — 22 and 22 — 2z — 3 are
shown. One of the main problems of algebra is the development
of methods for finding the zeros of functions. The graphical solu-
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tion of this problem, so far as real zeros are concerned, consists in
finding where the graph crosses the X-axis. One of the advantages
of the graphical method of dealing with functions is that it presents
to the eye the zeros of a function.

EXERCISES
Plot and find the real zeros of the following functions.
1 22— 22— 3. N
Solution: Compute the table. O \
IEIELIELE NN Y

P—~2~3=| 12 | 5 [—3|—4| -3 |-

Plotting these points and dra.wmg a smooth curve throughy them, we have
Fig. 7. The graph crosses the X-axis at — 1, and 3, wlgbh are therefore
the zeros of 22 — 2z — 3.

o5
2. 5z — 4. <D 4] ~draftitirary or,
3. 22+ 2. ) § » %
4. 72 — 5z + 4. \*;
5. 4z — 2. ' . :,,” \
6. 62% + z — L. A\ \ ]
T. 52 — 4 — . o \ {
8. x3+3x2-—x—3. . \ [ X
9. 25 — 9z, Q -1‘& 0 /3 o
10. Between what mtege% does each of \ /
the real zeros of 8z%— 0:3‘ 2245 lie? X /
11, Showthatx’+x+1 has no real &_/
zZeros. BB
12. Show t@t‘ ha,s 1o real zeros. Fie. 7



CHAPTER IV

EQUATIONS AND THEIR SOLUTIONS

19. Equations and identities. A statement that one expressiof
is equal to another expression is called an equality. The two‘Qx-
pressions are called the members of the equality. Thereare two
classes of equalities, — identical equalities or 1dent1t1es, and con-
ditional equalities or equations. An identity is definéd h Art. 7.
It is there stated that the two members of an identity*are equal for
all values of the symbols for which the expressions are defined.

Thus, A0

22—at= (z — a)x + a), 5(1\‘%10(1 — 5a

are identities. But in the equality 2% = 4 — 2z, the two ex-
pressions * — 5 and 4 — 2z are equ;a,l only when z has the value 3.
An equality of this kind, in which\ the members can be equal only
for particular values of the letters 1nvolved that is, are not equal
for all values, is sometimes called condltlonal equality. In this
book we shall use the term equation to mean conditional equality.
When it seems necesafé7 fo indicate that an equality is an identity
and not a conditional‘equality, we shall use the sign = instead of
the sign = between’the members. But the sign = will be used
for both 1dent:1t1es and equations when this usage can lead to no
confusion. . ¢

\\ ' ORAL EXERCISES
Wh:c.h of the following equalities are identities?
1.\1; 4 =0. 4 (x— 1)(z—3) = 22 — 5z - 6.
‘g(x—l)(x—3)—z2—4x+3 5.x2=(:v—4)2+8:z:—16
22— 9 1
3‘:5 3-—x+3 .1———1+z+x2+ —

In equalities 8 and 6, may z take all real values?

20. Solution of an equation. In an equation there are some
symbols whose values are assumed known and others whose values
are unknown. These are spoken of as the knowns and unknowns.
To solve an equation in one unknown is to find values of the

32

Q!
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unknown that make the two members equal. Any such value is
said to satisfy the equation and is called a solution or root of the
equation. A solution of an equation in more than one unknown
is a set of values of the unknowns which satisfy the equation.
Thus,z = 1,y = 2, is a solution of y = z 4 1.

To solve a sysiem of equations in any number of unknowns is to
find sets of values of the unknowns which will satisfy the equations.
Any such set of values is said to be a solution of the system of equa= ™

tions. N
EXERCISES R \J)
. Is 2 a solution of 22 + 7 = 4? Y \
. Is 3 a solution of 2 — 5z + 6 = 0? N
. Is 0 aroot of 22 + 2 = 0? M'\'\"

Is — larootof 2 — 3z — 5 =07

- Isz =1,y = 2 a solution of 2z + 5y — 12 £'@*" www.dbraulibrary.or
. Isz =2,y = — 1 a solution of 2* 4 2zy ;F;?yf =1?

T.Isa=1y=22 =3asolutionofx‘—l—“2>+3z— 14 =0?

OOt W

Solve the following equations for ¢ and, cheék by substitution:

8. 3z + 6 = 5z + 10. S8 — 1) = 2(x + 1)
9. 72+ 9 =2z — 6. o016 3@+ 1) + 27 =22 4 12,
10. 52 — 7 = 2z +9. S8 16 @+ D+ 3) =2z — 2).
17, bz + b = 6b.
1. 24294
2 t3717% AN 18. 3(a — z) = 10a.
12, 10 + 1z = 2 +%2\ " -
5+2$= 'E'\K ‘19.51;_%_}_2(1_0_2_:5):;&
13, 2 = 10,8
z—~1

21. Equ\i@}l“ent equations. Two equations or two systems of
equatio&qéare said to be equivalent when they have the same solu-
tionss\that is, when each equation or each system is satisfied by
theésolutions of the other. Thus, the equations z — 2 = 0 and

“3&“— 6 = 0 are equivalent, the second being derived from the
\ﬁrst by multiplying both members by 3. Again, the equations
2 — 5z + 6 = 0, and — 10z* = — 50z + 60, are equivalent. The
second can be obtained from the first by performing the following
operations on both members.

(1) Multiply both members by — 10.
(2) Add — 50z + 60 to both members.

It must not, however, be inferred when the same operation is
performed on the two members of an equation, that there neces-



34 EQUATIONS AND THEIR SOLUTIONS

sarily results an equivalent equation. The following examples
will show that this is an unwarranted inference.

EXAMPLES
1. Consider the equation 3z = z 4 4. (a)
Square both members, 922 = 2? + 8z 4 16. ®)
The equation (b) is satisfied by 2 and — 1, while (a) is satisfied by 2 and
not by — 1. Hence, (a) and (b) are not equivalent. e
2. Consider the equation 3z + 2 = 5z — 8. . ()
Multiply both members by (z — 1), 2\
@— D@z +2) = @ - 1)z - 8). O @
Equation (d) is satisfied by 1 and 5, while (c) is satisfied only‘by 5. Hence,
(¢) and (d) are not equivalent. .\.\
3. Consider the equation V1 — z — z = = 1. \/ (e)
First, add z to each member, then square both members. There results
1—x=1—h+@<; )

Equation () is satisfied by z = Oand z =% ; but z = 0 does not satisfy {¢).
Hence, (¢) and (f) are not equivalent. A

4. Consider the system of equations"' ;

x—ky }

z Sy = 5. ®

Multiply the members of t\he first equation of (g) by z, the second by .
There results }
\\ (@ +y) = 15x,} @)
O Y- =35
This system (h)\ls sa/clsﬁed by the four pairs of numbers (10, 5),* (0, 0),
0, — 5), (15, O)Xbut (10, 5) is the only one of these pairs which will satisfy (g).

Thes ‘S{mple examples show that the same operation performed
on the\two members of an equation does not necessarily lead to an
equa:mon equivalent to the original one.

“NIt'is manifestly important to know whether an equation is
equivalent to that from which it is derived; and if non-equivalent,
whether it contains at least all the solutions of the original equa-
tion.

The following operations which the student has often performed
in elementary algebra lead to equivalent equations:

(a) Adding the same number to or subtracting the same number
from both members.

* The notation (10. 5) means z = 10, y = 5. (See Art. 15.)
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(b) Multiplying or dividing both members by the same known
number provided this number is not equal to zero.
(¢) Changing the signs of all the terms.

If a derived equation contains all the roots of the original equa-
tion and some others, we shall call it redundant. If the derived
equation lacks some roots of the original equations, we shall call
it defective. The student should always be on his guard against
treating two equations as necessarily equivalent simply becangé, >

the one has been derived from the other. O\
£ N

22. Operations that lead to redundant equations. The fol-
lowing operations on the two members of an equatgom lead, in
general, to redundant equations:

(@) Multiplying both members of the givéed "‘equatlon by a
function of the unknown that has a zero (Arts18).www.dbraulibrary.or

Ezxample 1. Consider the equation 7z + 38 = ng\ 4. (a)
7 AN
The root or solution is z = 5 PN,
Multiply each member by (2z — 3). We have
2z — 3)(7z + 3) (2:1: — 8)(9z — 4). ()]

Equation (b) has roots % and E; but g is not a root of equation (a).

Ezxample 2. Consider theﬁquatlon z—1=0. (¢)
The solution is z = 1., )
Multiplying each me};;\ber by z, we have

22—z=0. (d)

Equation (d) h&s roots 0 and 1, but 0 is not a root of (c).
®) RalsLI;E both members to the same integral power.

Emm}@&fl Take the equation 3z = = + 4. (e)

Squarmg each member, we have

N : 9g2 = 2% + 8z + 16, 0
\\; Equation () has roots 2 and — 1, but — 1 is not a root of equation (e).

Ezample 2. Take the equation — Vz = 1. )]

There is no value of z that satisfies (g).
Squaring both members, we have

z =1 r)
While 1 thus satisfies equation (&), it does not satisfy (g).

Norg: Tt is common practice to consider vz as represeniing the positive
square root of z. When both roots are meant we write +£V7z. Thus V4 =2,
V4= x2
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is of degree two in z, one in y, one in 2, one in y and z, two in x and
z, three in z and y, three in z, y, and z.

95. Rational integral equations. An equation, in one unknown
z, of the form
az® + @™t 4 o+ + @n1x + a0 = 0 (a0 % 0),

in which the left-hand side is a rational integral expression of,
degree n in z (a polynominal of degree n in z) is called a ratioral

integral equation of degree n in z. Thus, O\
22 — 5z = 0, O
and 3224+ T2 —-%=0 N

are rational integral equations of degree 2inz. & & 4
As an extension of this definition, a rational<nfegral equation

in unknowns z, 9,2, . . . is a statement that twe'rational integral
expressions involving z, y, 2, . . . are eqt@‘\ For example,
322 — Bay — o = 2awb dayz 1)

is a rational integral equation in z, ) and z.

The degree of a rational intggréf equation in eertain unknowns
is defined as the degree of a termi whose degree is equal to or greater
than that of any other texm in the equation. Thus, equation (1)
is of degree two in 7, threpdh y, three in z and z, three in 7, y, and 2.

In this course, the term degree is applied to equations only when
they are in the rational integral form.

We sometimtis Speak of the degree of an equation without men-
tioning to what letters we refer. In this case, it is to be under-
stood that;w\e mean the degree in all the unknowns.

eq}iﬁons of the first, second, third, fourth, and fifth degrees
are Called linear, quadratic, cubic, quartic, and quintic equations

ORAL EXERCISES
Give the degree of each of the following equations.
Lox+by+c=0. 8. 52 +ayt —y = 0.
2. ax* 4+ bzy + o = 0. 4yt + 20%° — 3uty — 23 = 0.
6. Give the degree of the expression az5 — 4 2 — i
g o p! ma%y? — 3nzy + y¥inz. Iny.

. 6. Give the degree of the equation 10z°—4azyz — Szyz+ byt = 5t — 2022
inz. Iny. Inz Inyandz Inzandez, Inzandy. Inz, y, and 2
7. Given an equation whose members i i 't .

: are rational integral functions of 2.

If you multiply the members by & — & where ¢ is not a root of the given
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equation, what root is introduced into the derived equation? Illustrate with
the given equation z = b.

8. If z — a is a factor of each member of a given equation, what root of
the given equation is, in general, lacking in the equation obtained by divid-
ing the members of the given equation by z — ¢? Illustrate with the given
equation z(z — @) = b(z — a).

9. Give examples of rational integral equations in one unknown, z, which
are (1) linear, (2) quadratic, (3) cubic, (4) quartic, (5) quintic. {\

2%7
L ¥
R
{\ W
\ ..
‘\,& »
s‘\:\
AN
N\
N
N\
O
&\
N N
(‘ ‘}
& )
{x&)
Y
O”



CHAPTER V
SYSTEMS OF LINEAR EQUATIONS
26. Type form. An equation of the form

ax + by +c =0, ON
is called a linear equation in two unknowns, . <K "\
ax o\
When b > 0, it can be put into the form y=-3- 7O 2

Since in (2) we may assign to z any value and cgﬁlp{it_e a cor-
responding value for y, the equation defines y asfa“function of

in accordance with our definition of g mathématical function
(Art. 13).

, N>
The graph of the linear function is a@t}aight line (Art. 16).

The straight line Tepresenting the fuhgtion — % — 2 is also the

- b
locus of all points whose cofrdinates satisfy the equation
y=- ab_x - g Hence, thg:.':glfaphical representation of the

equation az + by + ¢ = O a straight line.

£ 3
¢{ EXERCISES
ooy :
Graph each of the\following equations,

La—y=1 e S

\
Solution: Thisiequation may be written ~T 11—
in the form ¢ D

Ny =z-—1

Tyefg'}aph of the linear function z—1 >X
is_the“line shown in Fig. 8, and is by 0

,..q’eﬁ\nition the graph of the €quation T

\:r;— ¥ = 1. Since we know the graph to

be a straight line, it is Decessary to plot Z

t.wo points only, and to draw a straight ~| /

line through them. The farther apart the Tre. 8
two pointg are, the more accurate the )
graph is likely to be.
Zz4+y=, 6. 3z + 4y = 5, -
829 o} - 8_&Ly+$__y=1,
Y . 6. 4z + 3y = g 2 3
42—y T 42 -3y =

L 40
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27. Graphical solution of a set of linear equations. As stated
in Art. 26, the graph of any linear equation in z and y is a straight
line. Any such equation is satisfied by an indefinitely large num-
ber of pairs of values of z and y, that is, by the coérdinates of all
points on its graph. In the graphical solution of the system of two
equations, we seek the codrdinates of points common to the
graphs of the two equations. ~

As the graphs are two straight lines, three cases arise:

(1) In general, two lines intersect in one and only one POIREN

(2) Two lines may be parallel, and thus have no point{in ‘com-
mon. A\ ]

(3) Two lines may be coincident, and thus have’a)zf indefinitely
large number of points in common. ~"‘~.\\

Corresponding to these three cases, a set of {wo Tinear equations
has, in general, one and only one solutionphbut it “RtagPRaYHbEary -ors
solution or an indefinitely large number..t}f’Solutions. When the
graphs are two parallel lines, there ig"no’ pair of numbers which
satisfies both equations, and the equations are said to be incom-
patible or inconsistent. When, jﬁhe graphs are two coincident
straight lines, the two equations of the system are equivalent
(Art. 21). Examples of each Case are given in the following exer-
cises. AN

¢\ EXERCISES

Find the solutions ©f, the following equations by plotting the graphs.

L z—y+1€0, 6. z—y=0 v
4x+yﬂ\16’=0, 5z — 5y = 0. \
See Figh0: 7. 3z — 2y = 12, \

5z + 3y = L \

2. 28y —4 =0,
28—y 1=0 8 4x—12y—-4=0, \
> N 8z + 11y — 18 = 0. \

\8Jz 4y —4 =0,
N/ zZ+y—2=0.

9. 5z2+3y+9=0,
3z —4y+17=0.

4.2x—3y=0’ z
2z — 3y = 1. 1o.§+3§’=4, 0 X
A
5. x—3y=4’ E_y=0
2z — 6y = 8. 23 : Fic. 9

11. Graph 2z + 3y = 1. Multiply both sides of this equation by 3 and
graph the resulting equation. Compare the graphs.

12. Graph 2z + 3y = c for two different given values of ¢. Compare the
graphs,
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28. Solution by elimination. The process of deriving from
system of n equations, a new system of n — 1 equations with ope
fewer unknowns is called elimination. Thus, when the given
system consists of two equations in two unknowns, the new
system consists of a single equation in one unknown, -

Elimination by addition or subtraction is illustrated in the
following example. N\

Ezample. Solve 22+ 3y =4, O\

3z — 4y = 5. AN

Solution. To eliminate z we first multiply the members o{ .zthe first equa-
tion by 3 and those of the second equation by 2, obtainigg( .

6z 4 9y = 12, RS /
6z — 8y = 10. ) 2
Subtracting, 17y = 2. T,hen v =17

Substituting % for y in either equation, say Q ;t}e first, we get

2 \J 31
2z+3-ﬁ='4,."9r :c—ﬁ~

Check:  Substituting :1% for z, anfl’jl—g,i for y in the two equations gives

31 2 62 6 _68

RS RICES P

Bl AN 2 93 g 8
3'§,t\4'1~7——1—7—1—7—1—7—5.

We can solve the és@ations also by elimin

ating y, which is done as follows:
Multiply the mebers of the first equation by 4, and of the second by 3,
obtaining VY e
:‘.\ 8:6-|—12y=16’
7, 97 — 12y = 15,
Adding /& 72 =31 o g3,

17

ar}d}l}Bstitution in the first equation gives y = 137

N L
« Elimination by substitution consists
known in termg of the other from one eq

this result in the other equation, thyg
in one unknown,

Ezample,

of expressing one un-
uation, and substitut}ng
obtaining one equation

Solve by substitution 24 +3y=14

Solution.: From the second equation we obtain z

=514,
-9+ 4y
z 'T.

in terms of y,

or
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5+ 4y
3

Substituting for z in the first equation gives
5+ 4
2. 20 1 gy,
or 10+8y+9y=12
whence 1Ty =2 or y= 17

_5+4y 5+4.7 93 31 O
and z=—3 = 3 e VAT

~e > Y
which checks with the solution by the method of elimination by add,ltlon or
subtraction. \

EXERCISES 7\

&/

Solve by elimination by addition or subtraction. ’\

1l 2z —y =235, 6ax+by—c
T—-2y=—2

2. 5z + 6y = 22, x+\a‘ -1,
z—4y=—86. ': ty

3. Sz4+2—4=0, A} x+y_+b=1.
10z — 4y + 48 = 0. b

4. 3x—-2y—3=0, »’ 8. mz + ny = 2mn,
2c -y —4=0. o nx + my = m?* 4+ nt

7
S

6. 0.7x + 0.3y = 0.68, m{ 9. Solve exercise 1 by substitution.
0.3z 4+ 0.7y = 0,9{“.} 10. Solve exercise 2 by substitution.

29. Solution by determinants.
Let O @z + by = ¢,

\:\“ Q2T + bzy = Cy

be two 1Hear equations in two unknowns. Multiply the mem-
bers Of the first by bs, and those of the second by — bi. Adding
~~the members of the two resulting equations, we obtain

(albg —_ a2b1)$ = (b201 - b162),
or z = M, provided a:b: — azby # 0.
albz —_ azb
In a similar manner, by multiplying the first and second equa-~
tions by — a; and a; respectively, we obtain

= &% = B provided aibs — asby 5= 0.
a1b2 - azbl

dz +ey) N= f, WWW. dbraulibrary .or;
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We note that the denominators of the above fractions are alike.
The denominator may be denoted by the symbol

ay b1 '
as [

which is called a determinant. Since it has two rows and two
columns, it is said to be of the second order. The letters ai, by,
as, bs, are called the elements of the determinant, and as, bs, cond™\
stitute the principal diagonal. A determinant of the second oxder
then represents the number which is obtained by subfcr\éébi}lg
from the product of the terms in the principal diagonal, the’prod-

uet of the other two terms. Thus, N
e oyl _ 12, _\_‘_
s w W= Y2 g 4] = 4 — B 2.
Using the determinant notation, we m@ﬂéw write the solu-
tions of our equations in the form o\
a b ’ ::'.ax o
cz by oM az - C2
= ——-y".}, Yy = .
ay b1 if N a, b1
2] “bz‘ ’ az b

We note that the nug}e}«ator of the solution for z is obtained from
the denominator b}\Substituting in place of a;, as, which are the
coefficients of z ih,the equations to be solved, the known terms
¢, €2 In a similat’manner, in the numerator of the solution for y
we replace’hé‘,bz by ¢, e respectively.

'\
\\ EXERCISES
'S'p!ize the following equations by the use of determinants.
ws; "}‘ ix + 3y = 47
N Sotution: T =5
4 3‘
e=d0 T4 _—16-15_~31 3
lz 3 -8-9 T TTITIm
s -4l
2 4
B35l _10-12_ -2 2
'2 3] —8=9  Ti7TI}
3 —4
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2 z4+y=3 4.3z —2 =7,
2z 4 3y = L. 2z +y = 21.
3. 3z + 5y = 12, 5. 2r—4y =1,
r+ 2y = 5. 70z + 30y = 1.
6. 2+5=4 7.(””_;l)+(x+y)=1,
z,y_ 7 I Cll) B |
3T4=% (= + ) 3 ~
3,5 1,1
8.:—3‘-’(—&:12, 95+§=3, ',\:\
1,2 2,3 N
PR aty=t
Hint: Solve first for 1 and L : A
z ¥ LV
10. In solving a system of equations \%
az 4 by =¢q ,\\,,‘ www.dbraulibrary.c
$
sz + by = Oz} \~

by determinants, show that if the determingnfz in the denominator and the
determinants in the numerators are all 2eroy’ then the two equations are
equivalent (Art. 21). P\

\
) e
\

30. Systems of three linear*equations in three unknowns. A
system of three linear equations in three unknowns may be solved
by the method of elimination, but the use of determinants (Art.
32) gives a more systematic solution. There are special systems
in which there are.iné solutions, or infinitely many solutions. Such
systems are net\considered in this chapter. The following exam-

ple illustr@t\éé,\t“}ie solution by elimination.

Exan;zfl\g\‘“: z—2—2z=—1,
LAY 260 4+y+2z=0,
N 3z - 5y + 8 = 13.

)
\ Solution: Add together the first two equations to eliminate z:

-2y —2=-1,
22+ y+2z=0
3r— y =17

Multiply the second of the given equations by 8 and from the result sub-
tract the third equation:
3r— 5y+8 =13
13z 4 13y - 13,
or z4+y=-1




46 SYSTEMS OF LINEAR EQUATIONS
We have now reduced the system to that of two equations in z and y, i.e.
3r—y=—1,
r+y=—1.

Eliminate y by addition, obtaining 4z = — 8, or £ = — 2. Substituting
T=-—2mz+y=—1, wefindy =1, Substituting z = — 2, y = 1 in
T—2y—2z=—~T,wegetz = 3.

Check. (=2)—-2(1) - @) = -7, )

2=+ M)+ @) =0, O
3(—2) — 5(1) + 8(3) = 13. Ao
¢\
EXERCISES O
Solve the following systems of equations: N
1 3z+2 —z=4 ' 6. az' 4 by = g, <§~"
5z — 3y + 22 = 5, by + ¢z =’b,"j}

6r —4y + 32 =7.

x+y+z=1)
3+ +T2=1,

152 — dy + 82 = 18,
14 14 3
3. ?+7—23, ‘: ??A
2,2 o
yte=5 N\
7,7 ~
zT3=8 &
Hint: Solve first for .tl&‘va’riables 9.
1,11 N\
2y 2 O
4 s+l 10.
2z 4+ g{«&.ﬁz =3,
4z —ﬁg}-&— 3z = 14,
5. x "z ,
Wz =2
et = 4

~O
/3L Determinants of the third order.

numberslwith bars on the sides

by
az by
bs

471 Cy

Ca

as C3

azr + ¢z &

.z +0yj§\3‘a,

TAE = 4a,
:y:-l-»’z=5a.
5tE=S
%+§=m

2a:+3y+5z=2,
5x—y+4z=5,
7:c—2y+6z=5.

A—5B—60 =2,
—34 -4B 4100 =7,
104 + 2B — 36¢ = — 1.

The square array of nine

1S & convenient abbreviation for the expression

a1b2€3 + b102a3 + c1a2b3 - clb2a3 —_ alc2b3 — b1(12(33,

¢y
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and is called a determinant of the third order. As in the case of
the determinant of the second order, the letters a1, by, ete., are
called the elements, and the letters a;, by, ¢; form the principal
diagonal. The expression (1) is called the expansion or develop-
ment of the determinant. It is seen that each term of the expan-
sion consists of the product of three elements, no two of which lie
in the same row or in the same column. Any determinant of the
third order may be easily expanded. Rewrite the first and seconh
columns to the right of the determinant. The diagonals Jihting

a b ,'si\
a b

asz b3

a b o
a b e
as b3 C3

el
77
S

7

L4
-

down from left to right give the positive terms. The diagonals
running down from right to left give the ng.gative termw. dbraulibrary

AN
EXERCISES, )
Obtain the expansions of the following determinants.
13 4 oL ,
1. 1273 =1-7-5+3~3-‘1:.'—¥-«4-3-2—4-7-1—3-3-1—5~2-3=1.
135 N
11 6 m< ' 6 1 1 2z z
2020 3. . 00" 4|33 -1 6. (11 1]
1213 XN ,13 2 3 4z
11 240 07 0 a0 b
3 |2 2 AV 5. |—23 —10 7. 10 y z|-
1 208 -95 —21 v 0
..\:

32:~'§fution of three equations with three unknowns by deter-
Midants. Let the three equations be

\M‘: ) ar + by + ¢z = dy, 1)
ot + bay + ¢z = dy, 2)
asx + by + ¢z = ds. 3)

Multiplying (1) and (2) by b, and — b; respectively and adding,
we get
(a1b2 - azbl):v -+ (bgCl - b102)2 = diby — dsbs. (4)

Eliminating y in a similar manner from (1) and (3), we find

(ashy — azbs)x + (csbr — bser)z = dsby — dibs. (5)
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We now have two equations in two unknowns, z and z. Elimi-
nating z from these two, we find

[(albz — agb)(cshy — b301) - (asbl - axbg) (b2C1 - b162)]x
= (dlbz - dzbl) (Csb1 - b3cl) - (d3b1 - d1b3) (b261 - b102),

which after some simplification gives us

_ thbacs + dibsei + dsbics — dibscy — dsboe; — d2b103. O

" asbacs + asbscr + asbicy — arbsc, — asbact — @sbics o
¢\

The denominator is the development of the determipant in
Art. 31, while the numerator is the same as the denorriin'};’tor with
a1, Gz, az replaced by di, dy, ds respectively. Hencesme can write

the solution for z in the form N
d b o N '
d b o .‘;.\\"
ds b; Cal \
T = _-:n_:..”
a by ey
[22] {172: Y Cy
albs ¢,

provided the determinant,in the denominator is not zero.
In a similar way, we camMind the values of y and z.

¢\J
’al d\\é’{ o b 4
a(h o w b 4
s @) o a3" by ds
..“.\' o bl ? a b oo
\“\ G b oo @ by e
T\ as b3 Cs as b3 C3

. :fl‘lhe'denominators In the expressions for Z, ¥, and z are the same,
\iﬁhﬂ.e the numerators are obtained from the denominators by re-
lacing the coefficients of the unkn

: own in question by the known
terms. For example, in the numerator of y, the knowns dy, ds, ds
replace by, by, by respectively.

Solve: EXERCISES
L T2y —z = — 7,
2Z+y+z=0,

. 3 — 5y + 8 = 13,
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Solution:

-7 —2 -1
0 1 1
13 —5 8] _
z = -4,
1 —2 —1 52 -
2 11
3 —5 8 '
1 -7 -1 N
2 0 1 A .
3 13 8 a2 \\\
y = =— = 1. N
1 -2 —1] 52 D
2 101 a
3 —5 8 e\
» L "4
1 -2 -7 \\}
2 o D dbraulib
3 —5 13 xi%,, www.dbraulibrary.c
2T g —ape
2 1 xﬁ"
3 \
‘:::;"
2 z4+y+z=86, 8% T2z 4 3y — 3z = 36,
204y —z=3, N\ z+ 2y + 3z =13,
z+2y+4+3 =13 3z +4y =1
SO
8 z4+y+2:=70 8 z—y+z =-09
2x+2y+2§é\tﬂ, 3y —z—2z =51,
3r—2y+es 1. 7z —y + 2z = 63.
29N
4. 3z +y AEL 15, 9. aty—z=0
z+@}{'—’"2=17, z—y=2b
3{{'@\,“32=——7. z4+2—-3a—b=0.

9 5 4 y ., 2z_

&“ sty t;=-2 10. stg+3=9
A 2,9 8, %(x+2)+y=7,
N/ Ty =z

§+§+E=_7_ _1_(;1;—2)——2y+3=0.
x y z 4
1,2 zty 27
6-;Jrz—/=0, n=A =g
3 1 z+z,y_38
PR 3 T3%%
4,3 y+a, T _
Z_I+;=1. 2 +3 3.
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MISCELLANEOUS PROBLEMS

1. Two numbers are written with the same two digits. The difference

between the two numbers is 36 and the sum of the digits is 12. What are
the numbers?

Hint: Tet z = one digit, y the other. Then the two numbers are 10z +y
and 10y + =.

2. 1f a two-digit number is divided by the digit in units’ place, the quotient

is 15. Subtracting 18 from the number reverses the digits. What is thel
pumber?

‘3. A was m times as old as B a years ago, and will be n times as'(ﬂd\as
B in b years from now.” Find the ages of each, first when a = 18 )n =17,
b = 12, and n = 2, and then in terms of a, b, m, and n. N

4, A linear function of z takes on the value 5 when z = 4) and 23 when
z = 10. What is the function? ",\

b. A quadratic function of z in the form aa2? + bz % c' takes on the value
12whenz = — 1,— 2whenz = 1,and Owhenz = ZK:What is the function?
6. If a man’s diet should consist of 4.6 ounce: '§:o\tein, 2.1 ounces fat, and
18.1 ounces carbohydrate, and be made of ceréaly milk, and eggs, how many
ounces of each are needed? According to théyUnited States Department of

Agriculture cereal contains 14%, protein, 2% fat, 72% carbohydrate; milk 3%
protein, 4%, fat, 5%, carbohydrate; egg§{15% protein, 109, fat.

Problems Pertéining to Mensuration

7. The sum of the three angles of a triangle is 180°. The largest angle is

three times as large as the" s\nallest one and equal to the sum of the two
smaller angles. Find e.\three angles,

8. Two angles aresupplementary, and one exceeds the other by 64°. Find
the angles. 7

9. The pernne)cer of a rectangular field is 160 rods. If the length exceeds
the width b % rods, find the length and width.

10, Il\the s1des of a rectangular field were each increased 10 rods, the

area wb\ld be increased 900 square rods. If the length were decreased 10

rods and the width increased 10 rods, the area would be increased 100 square
mro&s Find the area of the field.

Problems Pertaining to Finance

11. A man has $35,000 at interest. For one part he receives 317, interest
and for the other 4%. His income from this investment is $1300 per year.
How is the capital divided?

12. How would the $35,000 of problem 11 be divided if the interest rates
were 39, and 49,7

13. What is the capital of a person whose income is $2680 when he has !
o . 2
of it invested at 49, 3 of it at 439, and the rest at 59,2
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14. A man left to his three sons his property worth $18,600. The oldest
son had already received $1500 toward his education, the second son $700,
and the third son $300. The father wanted this inequality corrected by the
amounts named in the final settlement. How much did each son get in the
final settlement?

15. A man distributes P dollars among n persons of three classes, the first
class receiving a dollars each, the second b dollars each, and the third ¢ dollars
each. The first class receives the same total amount as the other two classes.
Find in terms of P, n, a, b, and ¢ the number that received a, b, and ¢ dolaxs,

N

7 ’\. A

Problems Pertaining to Averages N\
16. Four numbers have the property, that when successively‘t’:'he\hrithmetic
average of three of them is added to the fourth, the numbefs 21, 23, 27, 31
result. What are the numbers? '’

17. To find the average grade of a freshman in mathéh{atics, his grade in
analytic geometry is multiplied by 5, his grade in alggbra‘};g,amgg@.&}gqigﬁageym
in trigonometry by 2, and the sum of the three“preducts is divided by 10.
This gives 87 for the average grade. If the gl;a'des in analytic geometry and
algebra had been interchanged, his average‘grade would have been 89. If
the three studies had all counted the same nutnber of credits, his grade would
have been 88. What is the grade in eadhiof the three studies?

18. A student has three grades:ﬁv]:ich give an average 78. The sum of
the two extreme grades exceeds, bhe intermediate grade by 80. The highest
grade exceeds the intermediate by 18. What are the grades?

19. Two boys have the‘sa?ne average grade of 87 in the same three subjects.
For the first boy the %erehce between the highest and lowest grades is 9.
For the second boy this difference is 20. The average of the highest and lowest
grades is 87.5 for thefirst boy and 87 for the second boy. What are the grades?

A/
¢ \‘“ Problems Pertaining fo Mixtures

20. Ohe 1;;?;1' of metal is 209, pure silver and another is 129, pure silver.
How many ounces of each bar must be used, if, when the parts are melted
to%%hér, a bar weighing 40 ounces is obtained, of which 15% is pure silver?

'\21 What amounts of silver 729 pure and 84.89, pure must be mixed to
\ggt 8 ounces of silver 80% pure?

22. The crown of Hiero of Syracuse was part gold and part silver. It
weighed 20 pounds, and lost 1.25 pounds when weighed in water. How much
gold and how much silver did it contain if 19.25 pounds of gold and 10.5
Pounds of silver each lose a pound when weighed in water? .

Ezplanation of weight in water. A body like a piece of gold or silver when
weighed in water loses an amount of weight equal to the weight of .water
displaced. Thus, if z and y denote the weights of gold and silver respectively,

_Z .Y 195
1995 T 105
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23. A composition of tin and copper containing n cubic inches weighs
p ounces. The weight of a cubic inch of tin is ¢ ounces, and that of a cubic
inch of copper is ¢ ounces. What is the number of cubic inches of tin?

Problems Pertaining to Uniform Motion

24. Two automobiles left a garage at the same time going in opposite direc-
tions. The first traveled 8 miles more per hour than the second. At the
end of 5 hours they were 280 miles apart. What were their speeds per hourh

25. Two runners are practicing on a circular track 126 yards in circurh-
ference. When running in opposite directions they meet every 13 setohds.
Running in the same direction, the faster passes the slower every 126"seeonds.
How many minutes does it take each to run a mile? A\ hy

77N
L 3

Problems Pertaining to Physics '\'(‘

26. In Wilson and Gray’s determination of the temper’eizﬁre of the sun the
Fahrenheit reading of the temperature is 5552 more than the centigrade
reading. What is the centigrade reading? 79 \d

27. If h represent the height in meters abowe\ses level, and b represent
the reading of a barometer in millimeters, ‘i{:‘ixs known that b = k& + hm,
where & and m are constants. At g height *¥20 meters above sea level the
barometer reads 751; at height 769 metefs} 1t reads 695. What is the formula
showing the relation between b and RIVS

28. The relation between the bonlmg point w of water in degrees Fahrenheit
and h, the height in feet above sen,

ealevel, is known to be of the form h=xz— wy,
where z and y are numbersmt\ e determined by experiment. It is observed
at the height 2200 feet that) the boiling point is 208° F. At sea level the
boilir(lighgoint is 212° F\ at is the formula showing the relation between
W an 2

29. It is requi;e{d to find the amount of
in temperaotur%of Jone degree centigrade, also the length of the rod at a tem-
perature O “\1 ¢ represent the expansion, and bo the length required, it is

known thatb’= ct + by, where b is the length of the bar
¢ y t the t ture £.
When #=20°, the length of the rod is 1 A7 vie temperature

expansion of a brass rod for a rise

! 000.22; when.t = g0o° i
ity > When.t = 60°, the length is
~\' 3
| m‘; 7 Problems Involving Determinants
\ 30. Develop a a a
b b b
o 6
31. ShOW that a; bl + bzl _ |a b1 a bz
% ateal |a ¢ a Cz’
32. Show that
a a aq
bl bz ba =qa bz ba b3 bl 4 a bl b2
6 & o o G o lo
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33. Solve for z: ’ z 1] _ 0
14 7] ™
34. Solve for z: z z 1
2 4 5] =0
3 4 6
35. Solve for x and y the system of equations:
z 1 y z 01
2 —3 1|=0, y —1 0] =0, ((\
-1 20 -3 11

&{}”
S

.(;\

N

0 www.dbraulibrary



CHAPTER VI
EXPONENTS AND RADICALS

33. Infroduction. In certain exercises in Chapter II, we have\
performed multiplications by means of the law of exponghts,
amg" = g™, and divisions by means of the law, a™ + anesamr,

for special values of m and n. ~ ’~.
We shall soon find it convenient to make use of~ more general
exponents and their laws of operation. '....\‘ '

34. Positive integral exponents. Definitioh,— The expression
a® is read “a exponent ”’ or the “xth wer of a.”” When z is
a positive integer, o® is a short way of wntinge -a-a- -+ toz
factors.

Laws of exp\()s/l\isé\ﬁ/t(sibrauhbrary org,m

L - aman. N am+"
For, if m and n are positlve integers, by the associative law of
multlphcatlon NS

ara* = (g - '?1\\;1" - m times){a - @ - @ - - - n times)
=at8-a---m+ n times

a'n+n
qus:ratm §.5=5, 3.3.3.3 =31
IL %»5 (@mn = gmn,
Ll%@lstration: (345 = 3,
. ‘“\III (abc --.)m = gmpmem . ..,
\/ Iustraiion: (3~5-7-4)2=32-52-7’-42
Iv. (2>"’ =
b/ o
Tllustration: (§)3 =3
, T
V. a7 _ men
an —_— a ] (m > n)'
ustration.: 5
5 =
54
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am 1
VL. = e (m < n),
4
Iustration: % = 512
EXERCISES
What number should be written in each of the parentheses in the following®~,
1 926.98 = 90, 4. (g;f = 50, o
¢\
2.4-42-45-4(). 3\&  [2%\¢ &N
3. (3% = 30, . (E) ’ (§> 2= 2(),' 8.
Perform the indicated operations and simplify the results” w\hen possible,
Fractions should be reduced to lowest terms. Q\‘
8. 5% - 5% 14. (3a%b%c). 22 (2a2)2.
7. a%? - a™h?, 15. (— 3m™M3)3. \\ 23. (a%3)".
ad 4ab\? (" 24, (rms?m)e,
8. at’ 18. (m) ' ’\ 25. (rmstm)m,
9. a—g:—z~ 17. ( 2m‘), dbra‘uhbraryzgrgz_l%
10, &~ - B3, 18, o7 - art) g7, &
11, M7 19. (<8 - (-3 a7
ht o a:+4b6. 28, (a + by
12 6m4'n5pP A\ abt ad + b3
" 2mnipt \J a3nxn+1
13 12a4b?c \\2
" 8abic? . ,
6a BN (= —y)? -
2 .
(5 Az ( %) @I @t
a?) Y er\» 28y’ Ba2z—whdy—S .
80. (@% (:l/3> : (a¢:2> : 32. (a7 by )
2. n 2
= 3 Eﬁ;;;y; 35. (13)° - (13 - ()"

\'36 Fmdthevalueofl+ + it +—for:z:—10

37. Findtheva,lueof32:+5+—+—+—fora: = 10.

38. Establish the laws of exponents IT, ITL, IV, V, VI stating at each step
the principle used.

89. State the six laws of exponents in words.

35. Meaning of ai. The proofs of the above six laws of ex-
PBonents assume that the exponents are positive integers. Accord-
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ing to the definition of a* (Art. 34), such an expression as a’ hasno
meaning whatever. If we use such expressions, we must first give
them a meaning. It is convenient to define them in such a way
that the laws for positive integral exponents hold also for frac-
tional exponents.

Assuming Law I, Art. 34, to hold, we shall have

as - a% - Q3 = a%+%+% = q.

Assuming that some number exists whose third power is a, (g
shall denote it by a®. Another way of writing at is Va, ;W\hich
is read ‘““the cube root of a.” In general,if ¢ is a positive:i‘n’ceger,

al - af-ai-e to g factors = artatet mqtemsz-;— a,

/N

and af means a number whose gth power is a. An}other way of
writing af is /g, which is read “the gth root 6} 2

Thus, the fractional exponent 1 serves. ‘thg same purpose as the
radical sign vV . ! R\

_— ? Ay
36: Meaning of ad. According'to Law I, Art. 34, if p and ¢ are
positive integers, N
101 1 4 1
ad - ai - a2 - to pdactors = aatetat e topterms a,

and a¢ means the pth\p})\;/er of the gth root of a.
Thatis, @) @ = (Va).

37. Prmg{Q\aI roots. It will be seen later (Art. 102) that any
number g bas ¢ distinet gth roots. Thus, the number 4 has the
two §q}1'a\e roots & 2. We shall, however, for the present, con-

§idef1{'0nly the arithmetical or positive value of a% when « is a posi-

tive number. With this limitation, it turns out that od (@ >0)
has one and only one value. This value is often called the
px:incil?al gth root of a. For example, 9% = 3, and not = 3.
L.1keW18e, V81 = 3, and not & 3. If both the positive and nega-
twefoots are meant, we shall write both signs before the radical.
Wlthout this limitation, it will be seen from the following illus-
tra‘txon that the pth power of a gth root of a number is not neces-
sarily equal to a given gth root of the pth power:

1. .
(4%)* = 16, while the square root of 4¢ may be either + 16 or — 16.
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38. Meaning of a°. In order that the first law of exponents
may hold for an exponent zero, it is necessary that
a - an = a°+’” = am, 1)
or, a® = 1,if g % 0.
That is, any number a with the exponent 0 ss equal to 1, provided
a # 0.

39. Meaning of a” when n is negative. ITet n = — m, where
m is a positive number. By Law I, Art. 34, and Art. 38 \

am™ - g™ = gnm = aO — 1 ‘,\ w (1)

Hence, a ™ = a“lfn’ ifa =0, .~~.(”}"
L. ."’:\\' (2)
a" ¥ www.dbraulibrdry

That is, by the use of formula (2) an exg}resswn containing nega-
tive exponents may be reduced to one cbntlnmng only positive expo-
nents. o v/
2.3 p.5 2
75 T T E 5

Illustration 2. The decmlal 0'000 000,000,000,000,000,000,00166 gram
gives the mass of the hydrogen atom which is more compactly written as
166(10) 2,

We have now fouin&meamngs for fractional, zero, and negative
exponents cons1s‘bQ}1t with the first law of exponents. To give
logical completeness, it is necessary to show that the meanings are
consistent % #ith all the laws of exponents, but we shall assume

and a* =

22,7—1, —4.52

Tllustration 1.

this. \
'S X EXERCISES
,C%w Oral Practice in the Use of Fractional, Negative, and
=X Zero Exponents
PR Slmphfy the following expressions:
%
\ ) 1 (64)%. 6. 17 -zn . 2™ 13. a% - ¥ . g
2. 4z0. 7. (z7 - )™ 14, (32)% Lrl.g? g
3. T2, 8 (5 +8)" 16. (0.25)%,
o2 3 |
6 9. 9% 16. (0.25)"%.
= 10, (@)% 17. (22 4 379y
5 (1)-3 11. 36% - 973 18 (_ _é)-{
-3 L
137z
i (3)
\

* Bee Chrystal’s Algebra, Fifth edition, Part I, p. 182.
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MISCELLANEOUS EXERCISES

Obtain expressions free from negative exponents equal to each of the
following:

1. 472, 8. (9717, 13. [(0.81)1}5.
2. 671 .32 9. (4 )%, 14. [(0.0036)~3] L,
3. 371.32 10. (16)_%. 15. (.0025)'%.

0. 42 1 0 —
Y S .
6. z3 - 74, 9\-% 17. 4z‘2y—4y6.. ‘“\
7 o 12, (2—5> . 18. (= + y)(_’l':?:

4L
Write the following without denominators by the use of n_egélti}e exponents.

z 8y 1 3z 3a:%_

19. ;3 20. >y 21, (—LTs)—E-O- 22. @ )30- 23. y%
Perform the indicated operations and simplify, ,\ -

1, 20-3\0.2 N\Y prent
24, (b 21. (W) SR ) ( - ) .
26. (alblohys, 8. (~ayudl (PLu)%
26. (32059}, 29. (a%hy) ™2, g
Multiply: 2 '
32. (2% + y%) by (8 - ﬁ)aj} 84. o7} yhby o F — 4%
38. ohyd 4+ —L by x-gg%\ 35. af — a¥ + 1 by o} + 1.

T3Ys ..: 9,

Divide: \</

36. & — 1 by g1,
3T m~ 4 I Bym + 1.

38 2% LB+ ot + oot 4 by o 4 b4 oh

pl}.as.i.ge .the following expressions into equal expressions having as small
i)bszltyr've integer as possible with a fractional exponent.

9. 8%

Solution: 8% = (4-2)% =4} .93 — 9. 23,

40. (32)3. . 43. (125)%. 45. (800)%.

41. 48)%. 4. (313, 46. (2187)%.

42. (18)%.

Introduce the coefficients of the following parentheses into the paren-
theses.

4T. 2(3)%.

\ Solution: 2(3)3

]
'
[N
[N
N

= (433 = (19)

et
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48. 3(11)3. 50. 2(7)i. 52. 7(6)3.
49, 2(5)%. B1. 3(13)3. 53. 4(3)3.

Simplify the following:
n+ti\n 1 1
b4. (“ > . 56. (aﬂ _> B8. (a*" - by

ar an-H.
1\in
1 1 59. n . qnhin
B5. (27t - 2, 5. [:c(z b P (a @b )
60. Find the value of \
Yy =2°+ 422 + 3z — 8 - 5% .'\:\
when z = 53. £\
Ny
61 If po? = 10000, calculate p when v = 4. (n.‘;'
62. If ¢t = (28 s find ¢ when s = 100, g = 32. '\\ 4
g H 3
63. The number of revolutions per minute of a water Whé’él‘"i%"gﬁix}éﬁawlhféary ¢
formula { \\
e & &
n = 5325150
H Q

where F is the fall of the water m~f'eet H the horsepower. Calculate »
when F = 16, H = 100.

64. We may write 0.000,016. m the form 16 - 10%. Write the follow-
ing numbers in briefer form™by ‘the use of negative exponents: 0.000,002,
0.000,000,004, 00000017 \

65. The number o%rxokolecules in a pint of air under standard atmospheric
conditions at 0° C g about 14,000,000,000,000,000,000,000. Write in briefer
form by the use of U0*with an exponent.

66. The ve].ov:‘ty of light is 29,986,000,000 centimeters per second. Write
in brlefer form by the use of 10 with an exponent.

al(hfate the following differences.

[(1) - @] [- @7 = (-7 [(—) —2]; [() - (-]

N
P

\ ; “68. If 3% and 2% are substituted for z in the expression
x5 — 2zt — 5z’ + 1042 + 62,

show that the results reduce to the same number.

69. Two spherical particles each one gram in mass whose centers are one
centimeter apart attract each other with a force of 0.000,000,066,6 dyne.
Express this number as an integer multiplied by 10 with an exponent.

70. Some authorities say that the mass of a hydrogen atom is 1.663 X 1072
grams. How would this number be written in ordinary decimal notation?

71. The radius of the first Bohr ring of hydrogen is given as'0.5305 X 107®

- Centimeters. Write this number in the ordinary decimal notation.
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72. By the use of negative exponents express a micron as a part of a meter,
(A micron is one millionth of a meter.) '

73. The numbers 6867, 5896, 4861, 3934 each multiplied by 101 give the
wave lengths in meters of deep red, yellow, blue, and' ultraviolet, light, re-
spectively. Express each wave length in microns (see exercise 72).

1 1 2 2
T4. Show that %—ZIL}WQ reduces to —— when z3 + 9% = ok

z3 32:%1/

1
3

76. Show that 14 dyneme reduces to —a—i yif 2% + 4% = ok A

z 2xz 2\, A
40. Radicals. An indicated root of a number is called a isa\dical.
Thus, V3, V64, VV7, and ¥a + b are radicals. O3
The radicand is the number of which the root is totbe taken.

The number that tells what root is to be taken is called the
index of the root.

Thus in V'3, 6v/19, and 8V/z + y, the radl%dnds are 3, 19, and
z + 9, and the indices are 2, 4, and 3, re§pectively.

The order of a radical is given by the index of the root.

Thus V5 is of the second orderz,fvsf‘ 85 is of the third order, and
S0 on. ™}

As stated in Art. 35, the nthftjbof of a, written Vg, has the same
meaning as a*. That is, %& means a number whose nth power,

(Va)", is a. Thus, by definition, (V5)* = 5.
&

\, ' ORAL EXERCISES

1. Give the indeksof each of the radicals v/ 6, Va, Va + b.
2. Give the,order of each of the radicals v'6, Vg, Vg + b.

3. W%ih}s' the radicand in each of the radieals V6, Va, Vg 4 b.
4, Fﬁ}s e blanks in (V3)? = VT = (V27 =
K \5 \Express Va2

by means of fractional exponents.

\r;:i];alcrz efstin {)he form of a radical. Changes in the form of a
&y often be made by use of the definiti ¢
of a number, say of a, which im © deffvition of the nth roo

1i Y \n
use of the following equalities: plies that (V)" = a, and by the
L Ve -V - V.

1L ﬁ= "a
Vb b

o Y UL /g -
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The truth of these equalities is apparent from the laws of ex-
ponents. Thus,

Va Vb =ar b (ab)n—\n/a—b,

()l Vi

1L 1 mn
= (ai)m = gmn = ’\/&
\
Oral Exercise. In so far as possible, state I, II, and III in words \
N\
Radicals are frequently changed to advantage i in one or more

of the following ways: 3

I%IH

<
=

m

<

(1) By removing factors from the radicand, \
Tlustration 1. V75 = V52 -3 = V5 . V3 = 5\/5 www.dbraulibrary.
IMustration 2. V'24a%8 = V2% . 3073 = \/2<a33g V3a = 2abV3a.

(2) By introducing a coefficient under the radical sign.
Nllustration 1. TV2 = V7t - V2 =7 - 2 = V98,
Tltustration 2. 2a%/abw = V3q%h- Vabs = V8a'bs.

(3) By reducing a radieal with a fractional radicand to one
whose radicand is integjal

— $Q
< vio _ V10 _1
Tllustration 1. ¢2\a\\/— ET TR 5\/10'

«/‘ Vab
I llustratwn 2 =3

\siprocess is called rationalizing the denominator as no
radlc remains in the denominator.
\(4) By reducing a radical to lower order.
\ } ustration 1. V100 = V& - 5 = VvV . 52 = V2. 5 = V10.
Exercise. Carry out an equivalent process in fractional exponents for
(100).
Tlustration 2. V/8a%% = (28 - a®)t = 2¥adbi = V2abr.

A radical is said to be in its simplest form: (1) when the radicand
contains no factor to a power whose exponent equals the order of
the radical, (2) when the radicand is integral, (3) when the order
of the radical is as small as possible.
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EXERCISES
Change each of the following to a radical form:
1. o} 4. abE. 7. (pq)%.
2. 3z%, 5. (z + y)*. 8. x%yz%.
g
ot 6. az’, 9. <—) .
3. 2%¢ 5 A

Change each of the following to a form involving only exponents instﬁg‘ckof :
radicals: N

N
10. Va. 16. Vb, 20. ‘/. @331,‘": Va2
11. V. 17. Ya + b. 21V,
12. Ve, 18 \5/xmys £92. /g,
13. Ve, - )23 Ve,
14. 3, a - \/-I;a. 19‘ 3 abzca X'\ w/

YA L& 24. V16a~5c.
16. Varpangam, O

N\

Introduce the coefficient of each of following under the radical sign:

26. 53 20. 10V01. :,f;" 33. $V/25am.

26. 2V/32. %0. avE 8N 34. 2Va T 0.

27. 6V7. 31. —&mnV3me. 36. 1 + 2)vV1 + .
28. 3V/5. 32{% 6. 36. (a + b) V3.
Change each of thf; ~f9110wing to a radical of lower order:

31. VL. (@) 40. V/216.

Solution: \‘/gi‘ L VRl = V9. 4l Perform the operations in exer-
28, \‘/_4\“\ cises 3740 using fractional ex-

ponents,
39.,¥%00.

,ﬁ\(“}'héﬁlge the following to radicals of the same order:
3\&@%

Solution:

43. 2Vay, 5V 2yt
Solution:
2Vay = 2k = 2.8,3 2V zhz,

5 Tyt = 5x%y‘§z‘23‘ = 5z%y%z§ =5V xTyg‘

47. V5, V7, 50. 2v'2, 3v/3, 55,
48. \/;b, v Ty, b1, V x4z, 2V Tyt

49. 2Vm, Vanp, 52. 3Vabs, 4V
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Reduce each radical to simplest form:

53. V8. N 68. V/(a + b9R.

b4. ‘\/2_7: 27 69. \‘/__‘:L_E

56. V12075 62. V3. w0 </ &

6. V1800 63. ‘\/@. * 16c10

57. V54 64 V-1 71 V/38a%.

58. V2 65. V144, 7. 72;,;2:,/6. N
. V3. v : = ‘
.V 66. V3V3. O\

0% V2. ) 73. VASaPbicha,

60. V0.125. 67. Va? — 2ab + B2 O

L ¥

42. Rational and irrational numbers. A rational ~1’,111m1§er is de-
fined as one that can be expressed as the quotient‘bf\’cwo integers.
A real number which cannot be thus express¢dNS called ABHTaribrar
tional number. \\“

Thus, 16, 1, and 1% are rational numb\rs, V2,* V2, V3, V5,
1+ \/5 and 9% are 1rrat10nal numbex;s

Any irrational number can be inclosed between two rational
numbers that differ from one, afxother by as small a number as we
please. .

Thus, we may wnte, ,\

\\ M <V2<2
o 14 <V2<15
>N\
N 141 < V2 < 142.

* To Niw"that V2 cannot be expressed as the quotient of two integers, suppose
it is DOS:}!e that

e

N m
."\” '\/—=—y

) n
\ W

3
m

Where — ig g rational fraction in its lowest terms. At least one of the numbers m
n

ornisodd. Clearing of fractions and squaring both sides, we get
2n = m2
From this equation, we see that m? is an even number. Hence m is an even

Mumber. If m is even, m? contains the factor 4. Hence n? is an even number, and

m
nig i S i t — is a fraction in its
i8 itself even. This is contrary to hypothesis tha n

lowest, terms,
This proof is found in Fuclid (about 300 B.c.), and is suppose
Tuch earlier mathematician than Eudlid.

d to be due to a
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Either of the two sequences of numbers in the
two outer columns determines V'2 in much the same

$ way that .3 .33, .333, . . . determine 1.
As a geometrical illustration of an irrational
number we may take the diagonal of a square

1 whose side is 1.
Fic. 10 '\
ORAL EXERCISES
1. Tell which of the following numbers are rational: 5, % » V64 , 0.5¢ \{E,
. y ~\ w
0.444, V2 + 1.

2. Give an example of a rational number that is not an integef.’ N\
3. Can every integer be expressed as the quotient of two in%gérs? Explain.

43. Addition and subtraction of radicals. TFwovradicals which
have the same order and the same radicand aresaid to be similar.
Thus, 52 and ~ 2V/2 are similar; so a{s’o.\are V/81 and 2bV/3a
since V81 = 3V'3 and 26V3@ = 20bV8)
\:!/Qn the other hand, V2 and V'3 alje: dissimilar; so are v'2 and
2. ™

~

The algebraic sum of similar radicals equals the common radical
factor multiplied by the sum of its coefficients.

Tlustration 1. 8V2 + 3VZAIVG = 8 4+ 3 — V3 = 7V3.
Nlustration 2. V75 +\3Q/1‘2 —5V27 = vV25.34+3VZ-3 ~5vV0 .3

\ =5vV3+6V3—15v3
PAS. _ = —4V3
Tilustration 3\ \ .\%\/E +2 \/b—; ~ 3bV/25a%%2
3‘\11. 1 12
\’\\ = §V a?-a+ ZbV/%b; — 3bV'25ath%q
R ':; _a 2b?
:'\.:' —E\/(—I-FT a—15a’b2\/t;
w\‘ - 2
\ } = (g + 2—2— - 15a2b2) Va.
EXERCISES
Perform the indicated operations and simplify:
1. 4V2 4 8V2.

6. V16 + 9v/250.

7. 6V — V24 — V3 4 8V,
3. V20 + 8V15 — 2v5, 8. Va 4+ 6Vg — 2V,

4. 3v28 — V83 + 4V1TE, 9. 3V 4 4Vl 4 Vabia.
a 5. V81 4 5v/21 — V375, 10. Va® + 4V8a5bic + 36407,

2. V3 - 2v3 1 9v3,
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11. Vatbes + 8Vt — 5V asbie,
12. {/% + Voot — V2755,
13. V{a + b — Vai + a% — Vab® + b3,
14. Va + \/g + Vai + 2¢° + a.

15 \/g 3 \/@ 16, 3a%b + datc + 5atd. O
Y z A o
17. 2z%yt — 528yt 4 2283, \' \~>
Solution: Taking out the common monomial factor x%y%, we ] ’a\;é"
<™
28yt — Sx%y% + Zx%y% = (2 — 5z + 2y)x%y%.".” ’
¢ &
18. 3a3y% — 2a%y%. 20, ¥ + 2% + 3NN
19. 23a%b + 8ialbt — 18%abs. 21. 3} + 1230°\273b. \ vy dbraulibrary

w\J
22. Va®? + 3Vaghi + 5aV0ab? — 4abVab?. >
23. 3V8 — 4V72 + 6VA8 — VI0B. W)
24, \!/(:1: + )t = Vgt + By — \78xy3 »'%8174'

44. Multiplication of radicals;:’ \The product %f two radicals is
obtained by use of the prineiple Va - Vb = Vab. (Art. 41.)
We shall illustrate the progess of finding the product of two radicals
by examples. ¢ \J

Tustration 1. Multiply V'3 by V5.

Solution: VINW5 = 3} - 5% = 158 (Law III, Art. 34.)
ST =V

_ ~C

1 llustya\t%n“z. Multiply 2V/abm by 3Vmn.

SaQ»tz’én: 2Vabim - 3Vmn = 2(abm)¥ - 3(mn)3.

\”\ — 6(abPmmn)}  (Law III, Art. 34)
= 6Vabim?n.

Radicals of different orders may be reduced to the same order
by the methods of Art. 41.

Niustration 3. Multiply 2vab by 5Va%.
Solution: 2Vah = 2V,
5Va = 5V a'b?,
2V - 5VaiE = 10Vl = 10aVabb.,
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EXERCISES
Perform indicated multiplications and simplify as far as possible: .
1. 3Vm - 5Van. 6. V10 - V2.
2. 4Vabe - aVbe. 7. 2Va - 5Va®% - Vak.
8. 2v5 . V10 - 4V35. 8. V4.V3
4 Vz . Vg 9. V6 - V36 - V5. N\
5. aVb - Vabr. 10. V5 - V3.

O\
The multiplication of radicals is often much more ea,sﬁy per-

formed by the use of fractional exponents. That method should
be used in the next ten exercises. )

1. Vm - Voen - 5VmE. N
Solution: V'm - VmPn - 5¥Vmin? = mim§ni5m2nz .
= 5m%n% = 5};“ m%n% = Am - mi%n%%

= Sm{z/ .
| 12, Vay - 2Vzp. 23-/(V3 — V) (V3 + V5.
' 13. Va - Vb - V. ,;:;’124. (Vm + V),
, 14. V3. V3, N 25 2VE(VE + VE — 4V
‘- 16. 3v5 . V3. A 2% 20VE@VE — avab + 5va).
{ 16. V128 - V500. O 27. (5 — 2v5)3 — V).
] 17. gyt . ot Sk, 28. (V7 + VII)(V3 — V).
} 18. 3a%c§1- 159%b§7 29. (V2 4 2v3 — 3VE)
;y 19. — 8ashsls - sadber. 30. (adbf — ci)e

: 20. %qib%}%“f‘ga%cq 31. (3a} + 2b3)2
H 4 1 1
21«\ Fish . 3r2sp. 3. (ai/i_ Bo)>
33. (2V7 — 8V28 — VB3)e
22. (Ve + 2VB) BV — 5vE :
(VeF2VOEVa - 5VE. g (ab iyt - b

"\
N/ Solution: \/—+ 2V 36. (V5 -+ 4vG — 2VE),

\/ 3Va - 5v3

: ) 3a + 6Vab

. — 5Vab — 10b
3a + Vab — 10p.

36. Find the value of 22 — 4z + 1 if 7 = 2 4 V3,

37. Find the value of 322 4- 43 — 9 fr=_"2-V10 V1o
3

38. Find the value of gz +bztcifr = w
2a )




DIVISION OF RADICALS 67

45. Division of radicals — rationalization of denominators.
Division of radicals of the same order may be performed by the
use of the principle

Va \’/5
7=V (See Art. 41.)

Hlustration 1. gié = 3\/§ = 3V2,

For purposes of computation it is usually desirable that ‘bhe
denominator of the quotient be made rational. In fact, d1v1S10n
of radicals usually becomes mainly a process called ratmnahzmg
the denominator.

Vi0 _ VIO VE _ VD,
V. RV B RN
Vi Vi V6 _ Ve _VEC
V36 V36Ve V216 36
3VE+ V2 _ (3x/5gm.'ff-(2\/5+3\/§)
2v5 —3v2  (2V53V2) . @V5 + 3V?2)

30+2x/_o+gx/’?)+6 _ 36+ 11VI0,
20 18 2

Ky
..,\"

Hlustration 2.

lustration 3.

Tlustration 4.

“.EXERCISES

Perform the followmg dxisions, obtaining results with rational denomi-
nators: i\

1 VE+ V3 O 14, 6v150 + 5V/25.
2. V80 —\*@\ 15. (V12 — 4v6) + V3
3. ‘/—ZQW 16. (V104 3V15 ~7V35) + VIO,
& ‘/§5 17. 6 + 2V7.
\':‘ Vi35 + \/5 18. 7 + 2.
Vb - 19. \/% + Vab.
7. Vabet = \/;cz b
8.6V5 = 2, 20. (Ve + vb) + Vab
9. 6v5 + 25, 21, (Va + V) + Va+ b.
10. Vi + V3. 22. 3+ V6 + (2V6 — 1).
M. Vab + Ved, 23. 1+ (2V3 — 4V5).
R Varm + Vom, 24, (5v7 —3V11) = (V7 +4VIiD).

18, Vi - o 98, 7vV2 + (2V5 — 9V2),

v/ www.dbraulibrary.o
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3 Vo + vy

. 8_ —_— =

26. 3+ Ve 2 Vi —Vy
2 5V3 —3V5
e B Vva

Given 2% = 1.4142, 3t = 1.7321, 5% = 2.2361, evaluate the expressioni{l
each of the following exercises to four significant figures * both before and aftéf\
rationalizing the denominator. . . @

Does it save time in each computation to rationalize the denominatar

'\

1 3 v 1 QO
— 38— 36. —=-
7 2% + 33 VBN

7 5% + 25 g LU

VS Moo ~,.§5+\/3

2 1 4
32 —~—. 36. . /B8, —— .
V3 +1 2 + 3} O VR Vs

46. Solution of equations containing ‘radicals. Certain equa-
tions in which the unknown is involved under the radical sign
can be reduced to equations ofthe first degree. The following
examples illustrate the methp&;bf solving some of the more simple
but typical equations in }yhiéh such reduction can be made.

{"\\
«8”  ExameLEs
1. Solve the quhﬁi@n V3r +1 =35

Solution: Sqn:(}ri’;lg both members,

RO Sz +1 = 25,
Solving\{xir'aé, r =8,
Chéck: V25 = 5.

7o

<\: “It should be recalled that V25 = 4 5, and does not equal + 5; that is,
when no sign precedes the radical the positive value of the root is to be taken.
If both positive and negative roots a

e meant, we shall write both signs be-
fore the radical.

* In giving a result such as 2,23
giving the same result to three si
for 2.24 differs less from 2.236 th
desirable in giving any number of
the next figure beyond those to b
for, if we should obtain a result 2.
should be given to three significa;

61 to four significant figures, we write 2.236. In
gnificant figures, we write 2.24 rather than 2.23,
an 2.23 differs from 2.236. In fact, it is usually
figures of an approximate result, to find whether
© retained in the result is less or greater than 5;

23 and know that the next figure > 5, the result
nt figures as 2.94.
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2, Solve Vdz + 5 + 2Vz — 3 = 17.

Solution: Transposing,

Viag +5—-17=—2Vz — 3.

Squaring, 4x 45— 34Vir + 5 + 289 = 4z — 12.
Transposing and simplifying, Viz +5=0.
Squaring, 4x 4+ 5 = 81.
Solving for z, z =19, O
Check: V8l + 2V16 = 17 L\
or, 17 = 17. 7N\S ¢
3. Solve (z — 2)} — (z + 3)} = L. ‘

Solution: Transposing (x + 3)% and squaring,
t—2=z+3+2+3)7+1
This reduces to (= + 3)% = -3 RN
Squaring both sides and solving, z = 6. '\ &
But 6 is not a solution of the given equatlon vIn fact, the given equation
has no solution. A

Example 3 illustrates the fact that.lfé'sults obtained by squaring the sides
of an equation containing radicals st be checked by substitution in the
original equation to determine whether or not a result is a solution of that
equation. 4

0.' 4
o

www.dbraulibrary

STEPS IN THE SOL 1‘@:1; In solving equations containing radi-
cals it is usually con%nient to proceed as follows:

(1) Isolate the radwal that is, place it by diself on one side of the
equation. I f,{nare than one radical occurs, isolate the most compli-
cated one. po4

2) R'a\&t\?e both sides of the equation to a suitable power.

(3)~If a radical remains, isolate it and again raise to @ suib-
ablepower.

X&) Solve the resulting equation.

(5) Check the result.

EXERCISES
Solve and check by substitution.
LViys=o2o 5 Vz+3=1
2 2% = 5. Hint: Cube each member.
8. V8 =545 =0. 6. Vo—4+7=0.

L14vz-1=3 7. 2z — 6) = 4.
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810 —z = — (22 — 5)}.
9, Vet 15 =Vst1+2

14. Solve V = %71’73 for 7.

2V3 .

10. V9z +6 — 3Vz — 11 — 5 = 0. 16. Solve 4 = i for s. ;
1. Vo —4—- V2 —-10=0. 16. Solve ¥ = Vo 4 2fs for s.
19 Bz +HF o 17. Solve 4 = P(1 + i)* for 4.

Tz +5)E mgl

18. Solve s = for r.

5 @2 ™k Q

T+ 19. Solve 2 + Vi — 5 = 13 for,t.

— 2\
20. Solve d = .02758V' D -1 - VP for P. o\ }
2 s W

21. Using the formula s = g, where a

2

8 = height in feet from which an object fall& 0
g = 32.2 feet per second, N
{ = time in seconds,

find how long it will take an object to fall to thq ,@zéh from the top of the %
Washington Monument which is 555 feet high. . *

22. The velocity, v, of a falling body, st:@rttiné from rest, is given by the
formula » = V'2gs. A

(a) Solve for the distance s in terms Of »'and g.

(®) Calculate s if g = 32.2 and v =1928.8 feet per second.

o

47. Imaginary numbers The square of any real number, posi-
tive or negative, is a_pesitive number. The square root of a
negative number c n\i‘)t ‘then be a real number and is given the
name imaginary aumber. The imaginary number V' — 1 ocecurs
s0 often that a ,\speéial symbol is used for it; viz.

0N V—-1=3q
Any @ﬁnary number involves the product of a real number
and‘z'gj'}?or example,

) V-4 =vVav-1 =9

A \"

VvV VZIae=vavII1 = iva

To perform operations with imaginary numbers, replace any such
number, say vV — q, by 1V, and operate with ¢ as with any other

letter, but replace 2 in any expression by — 1. Thusif ¢ and b
are real positive numbers

V—a V=5 %Vga 3,
but V——a-\/—b=i\/a'z’\/5=z‘2\/¢—z\/l_)=—\/a_b-
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In Chapter XIII, the student will find a fuller discussion of
imaginary numbers, and in more advanced mathematics and in
practical applications he will find that they play a very important
role, comparable to that of the real numbers.

EXERCISES
Express in terms of 7. ~
1. vV—6d 3. — vV— 20 5. V= 3602,
2. — vV — 8l 4 vV—3 6.V~ 6atat, 'M,\’

Perform indicated operations and simplify when possible bx }ep]acmg
#by — 1.

7. A+ 492 —9). ) \\
Solution: A4+D2 -9 =24+1— 12, \/

=24 i+ 1, since iz\ = 1, www.dbraulibrar
=3+ 1. \'
8 (2 — )2+ ). 13. @:%3 \/_—3)(2 + V73,
( \/3)( 1 \/é) 14. 524 + 7)(24 — 7).
9. -~ 5 + 1 - —F— ] o)
2 2] Gy lev -1
10. (~ 14 V=3). RS MR RS
11, (z + ai)(z — ai). N 18 -+ D).
19 Tt 1 17 (4 + 30 + (4 — 302,
eSS ) 18. (a + bi)* + (@ — b))%

19. (3 + 44)t + (3 \4»)4
20. Find the value of 2 — 8whenz = — 1 +1V3.

— V3
21. Find thwa,lue of 22+ z+ 1whenz = —ITL—

QVIISCELLANEOUS EXERCISES AND PROBLEMS

I:f{-ffprm the indicated operations and simplify when possible.
7. (2- 8% +3 - 28)(2h).

~2vi. g “oh4a
2. V2.2 8. (5% + 2)(5% — 2).
' 9, (2% + 3%).
3. Vi.vi +
Pk 10. (3VZ — 5V3)(VZ + V3).
LV2VELR 11, @ + 3be
o o | 112 19)*)%
_ 3)3.
8. 3Va . 7v, 12. (12 (19)2) ( +(

P)
4 (422 — 95 . 9 4 1)(4a? + 22 - 23 + 1).

13, (%)2 _ 3<3 - Vﬁ) 1
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111
16. (@ + b)3 - (a + b)i(a + b)~E. 16.1 an (a-)n(as)ln.
1 1 5%
9v2 20, £-92. 23 ¢ + 2. g6 2.
17. Ve 2.3% b3 53
1 1 1 1 '9_.
V3 21. (15)2 - <11>” 24, ()7, o7, ¥2-0%
18. —=- y T (bo)i ]
V2 3 2% 5% n
19, Y2- V3 Bopss ® 3 28, ¥
T as
Reduce to the simplest form. ) . & \:\
V3 4+ V3 1\ 373 4 Bia\
Y3+ vz st (5)" 34, 202 9
29, . 5 273 —gh
7~V 32. (32)1%1. ok
07 + vy 33, 1 — 37 " A
C7+ 3% )

Evaluation of Formulas Involving Expon,qn}‘s:and Radicals

36. The diagonal of a square of side, s, is :9\2‘5_2: " Find the diagonal of 2
square of side 100 to three,significant figures.
37. The diagonal of\a Square of area, A4, is given by

Vai

s s 2A. What is thse'ﬂia:gonal of a square of area 70 square
inches? N\

38. The volufte, V, of a cube is given by the formula

V = d2-%, where d is the diagonal of a face. Compute V

— 5 when d 3{20 inches.

Fre. 11 39. Find the area of an equilateral triangle whose side
is 245 (Fig. 11.)
40. Find the side{s"of an equilateral triangle whose area is 36.

41. The probable error of the arithmetic mean of n measurements is

given by \ " 0.67450
p \ & ns

Where‘.a'i\s\ called the standard deviation of the measurements.
and &% 1.850, find the probable error to two significant fig

P g\z.‘The sag of an overhead trolley wire in an electric tramway is given
\b‘y the formula

a=\2H D),

where d is the number of feet in the sag, I is the nunaber of feet of wire be-
tween poles, L is the number of feet from pole to pole. Find the sag when
poles are 97 feet apart and length of wire is 97.2 feet,

43. The time in seconds re
vessel to another through an o

When n = 1000

ures.

quired for the discharge of water from one
rifice in the side is

§=0116-4 - B. (Fi — th
(4 +B)y-q ’
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where F and f are the differences in the heights of water in the two vessels
at the beginning and end respectively of the discharge, a is the area of the
orifice, A is the area of a horizontal section of the discharging vessel, and B
is that of the receiving vessel (Ineasurements in inches).
Find t when F = 188, f = 99, A = 94, B = 68, and the orifice is a circle
one and one half inches in diameter.
44, The probable error in a correlation coefficient, r, computed from n
pairs of values is given by
0.6745(1 — %) "\
n¥ .
A\
Compute this probable error to two significant figures when n = 1000,

r = 0.675. N
46. The probable error in the coefficient of variability, C, oﬂn &neasure—

ments is given by 7 g
0.6745 - C - (1 + 2075 . 2\

(2n)i

Compute this probable error when C = 0.3500 and% = 1000.
46. The area in square feet of the top of a WeH\deSIgned chimney is given
by the formula Q

A= 0.0:?; 1\7-;,
where Q is the quantity of coal in pqtfnds used per hour and 4 is the height
of the chimney. What should be the area of the top of a chimney 170 feet
high which is connected with afutnace using 12,500 pounds of coal per hour?
47. The quantity of wafer)in cubic feet per second flowing through a

rectangular weir is glven‘kQ\the formula
) @ =333 [L—2n],
where k is the depbh\of water over the sill of the weir in feet, and L the length
of the sill, N
Find Q, where'L = 47, b = 1.7.
48. Three“equal uniform rods of weight w and of length [ are jointed
tOgether 40 form a triangle ABC; this triangle is hung up by the joint A4,

a-L\d a\welght W is attached to B and € by two strings of length \/2~ The

www.dbraulibrary

¢ mpressmn in BC is given by

x=W\/§+1 =

o3 V3

Obtain & correct to nearest unit when W = 300, w = 100.
49. The ares of a triangle whose sides are @, b, ¢ i8 given by the formula

s(s —a)(s —b)ls— ¢

Where s = 2+ bt ¢ Caleulate from this formula the area of a triangle
2

Whose sides are 7, 13, and 14 inches.



CHAPTER VII

QUADRATIC EQUATIONS

48. Typical form. Any equation of the second degree (Art. 85)

in one unknown z can, by transforming and collecting tqr\mg; be

written in the typical form £\
az* + br + ¢ = 0, \ "

where a, b, ¢ do not involve z, and have any Value"sj with the one
exception that a is not zero. Since the result of \multiplying the
members of an equation in this typical form byndny given number
is an equation in typical form, the a, b, ¢ gan/be selected in an in-

definitely large number of ways. For exaniple, & may be chosen to
be an integer. \/

The function gz? +bx+c¢ (o # 0)'.is called the typical quad-
ratic function. N
EXERCISES
Arrange the following equ@j;idns; in the typical form and select @, b, and ¢
from the resulting equationg: Write each equation so that ¢ is an integer.

L322 — g4 k= §<<+2

Solution: Tral’l.sp‘gsing and collecting terms,

s
e N %x"’—-x+k—2=0.
N g
HensK?:\':“ G=zm b=—1 c=fk-2g
O
One way of writing the equation with ¢ as an integer is
'n\' \
~O 7:62—3z+3k—-6=0.
3
Another form is 72 — gx + gk - g = (),

2. 22 4 (22 — 5)2 = 3z,

¢ oz 1
s 4-§+§+Z=2x2+3x—4-
.3x2+4+§=§+z+1.

5. x2—-3kx+m=2x—m.
- (22 4 m)2 = 3(2z + m).

3
6
7. (a:—l)(x—2)+(:c—l
8

2 —
s

)(:v—3)+(x—2)(x—3)=0.

74
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49. Solution by factoring. When the left-hand member of a
quadratic equation in typical form (Art. 48) can be factored
readily, the solutions are easily obtained. Take, for example, the
equation 2 — 4z = 21 which in typical form is

22— 4z — 21 = 0.

The factors of the left-hand member are easily found to be
(z + 3) and (z — 7), and we may write the equation in the form< M

(x+3)z~-7 =0. O\
Any value of z which makes either factor zero will saj;i'sf} the
equation. If z = — 3, we have N

(=3+3)(=3-7)=0-(-10) - 0D
Again if x = 7, we have
(7+3)T =7) =100 =D

Hence — 3 and 7 are the solutions 0f>fhe given quadratic
equation. )

www.dbraulibrary

No/

EXERCISES
Solve the following equations by fa,cé’éi"ing.
L@-382=6-2n

Solution: Arranged in typic@“form this equation becomes
’3:53?—4:c+3 = 0.
The factors of the left-h}ld member are (x — 3) and (z — 1) and the equa-
tion may be written O
<"
The solution;mire? and 1.

(z—=3)@=—-1)=0

2. 2% + 665 = 0. 7. 22 — nz = mn — ma.
. (z4B)F = 1. 8. 3¢ 4+ 8t = 3.
L @d D -1)—-8=0. 9. 8 — 2ns +n2 = 0.
B 222 4+ 5z — 3 =0, 10, 4n? — 9 = 0.
N\B 322+ 4z 41=0, 11. 322 — 7z = 0.

12. 4 + 2(4z ~ 17) = 0.

50. Solution by formula. A quadratic equation may be solved
by the process of “ completing the square.”
For example, to solve

32+ 5z —2=0,
Write the equation in the form

x2+_§_x=%,
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Add @ - £)? = %5 to both members, and the left-hand member
is a perfect square. We have then
2+ 5z + §%
or (x + £)? =

Il
o

-+

9
G-

L~ ]
(%)
-

Lt

Extracting the square root of both sides,
r+&==x3 N\
r= —2o0r4 ::\:\'
| Both of these values of z satisfy the original equatipﬁ;\; Thus
| 3(—2)2+5(—2)—2=3-4—10—2<—”}®
33 +53) —-2=3-% —m&_o
Apply this method to the general quadra\tic equatlon
ax? +bx + ¢ —\O~

Transpose ¢ and divide through by.

b”“ ¢
x2+—~x=——'
o a

ol
o

Add (b ) to both memJQers to make the loft-hand member a per-

fect square, \‘ ).

B\ /by ¢ [bY b —4
2 N2 Yy L ¢t Sy v~ 2w
x.:l;“ax+<2a> a+<2a> 40>
\ v/
W b\ b — dac
or i”\‘\ <x + 2a> = iz

“Ex'\tract the square root, and obtain

\, b+ Vb — 4dac
QO St
or x=—b:|:\/b2—4ac'

2a

Hence, the roots of the general quadratic equation
ar? +bx+c¢ =0

are —b+ Vb~ dac and —b—\/b2—4ac.

o N Za 2a
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If we denote the first of these roots by r; and the second by 7,
we may conveniently use these expressions as formulas for the so-
lution of any quadratic. Thus, to solve the equation

3z* + 5r — 2 = 0,

we substitute in the formula, ¢ =3, b =5, ¢ = — 2 and find
h_ "5+ V2-4-3.(-2 -5+v19 _1
! 6 h 6 -3 O\
Similarly N
-5 — V49 )
Ty = —————— = — 2, A\
6 V
EXERCISES \{ N

Solve the following equations by use of the formula, '\é,ﬁ& verify by

substitution. \
www.dbraulibrary.

12— 6z—7=0. 13. 85 — 10 < &
2.2 +3%+1=—-2%+4 ,, 2 \;E.a}-'éz:z
8. 522 — 3z — 2 = 0. TT 2\ 2 )
4, 52 4+ 25 = 120. 15“1: 2 §x2+2=0.
B. af + 22z = — 120. RN M o
6. 2u(z + 4) = 42. 6. 2+ 11 +£ -7
7. 6n2 — — = Q. RN\

m—6=0 VI @+ 1 -8+ 1) = 16
8. 2m? 4 3m = 27. W

18. 32 4 r = 200.
9. 1822 + 6t = 4. e
%—-2 z—1

10.S(S+4)=7. \\ 19.3m=z+1‘
11 0.222 + 0.9z =835 20. 224 (5 — 2)t = (5 — 2z)%

o
[

- 032> — 0.75, K01
2L (1 - ez)x?\'—“émx + m2 = 0. Solve first for z in terms of m and e,
then for m %ﬁéfms of = and e, and finally for e in terms of = and m.

m."}\ 2 24, 22 — V2 + V3z = V6.
v ;? =0 25. 2t — 2az = 2ab — be.
”\;"" : 26. 22 —azr +a =z + axr — @
z a
\23. @ b al=o. 27. & — br — % = az — ab — 2a.
b a z 28. 22— 2nx =14+n — n%

29. 622 + 2mg — 3nx = mn.
80. Show by substitution that
— b+ VB — dac and
2a
are roots of qz? - by + ¢ =0.

Solve the following equations to two significant figures.

—b— ViE— dac
2a
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31 22+ 1.81z — 7.11 = 0. 33. x2 — 9.02z + 19.7 = 0.
32. 22 + 890z + 123 = 0. 34. 091122 + 1.01z — 33.3 = 0.

51. Equations in the quadratic form. If in an equation we can
replace an expression containing the unknown by a new letter and
have a quadratic equation in that letter, then the original equation
is said to be in the quadratic form. Thus in the equation

(@ — 1) - 11(22 — 1) + 24 = 0 \

ifweletz = 22 — 1, we obtain 22 — 112 + 24 = (. Again,xi}}v've
let ¥ = 2% in the equation O

227+ 278 + 1 = 0, we have N
20w+ u+1=0. (O

\ N
EXERCISES \ .
Solve the following equations and check the re\su\l}‘s
Lz-38-+vz-3-2-9,

N\

Solution: Letu = vz — 3, where the radical stands for the positive square
root of the number under it. The equation then becomes

mnyt
u? — =2 =0,
3
or U=2 or —1,

Replacing u by its value “i}(terms of z, we have

\'\\ \/ﬁ3=2y
s Ve —-3=—1,

S

Since vz — 3¢ the positive square root of (z — 3), the equation V-3
= -1 must}x{discarded. From V2 — 3 = 2 we have  — 3=4,0rz=1T

Check: :2}‘—’3—x/7—3—2=4—-\/z—2=4—2—2=0.
Her;e'éthe result £ = 7 satisfies the equation.

FBH — 322 — 4 < g, .l _1_ .,
N8t — 1022 4 9 = g, REEEE
\'4.:1:6—92:34—8:0. 8.6\/;;+L_=5
B (@ — 1 — 1@~ 1) 4+ 24 = g, Ve O
6. z+ vz =12 %.2-VvVz3-23=0.
g)int: Write the equation in exercise 9 in the form z — 3 — vz — 3

10. 22 + V2 11 = 11,

z—1 1




THEOREMS %9

122 22+ 24+ 16 -8Vt +2+4 =0.
13. (x2+x):—2(x2+z) -3=0.
14, 22 — 922 + 8 = 0.

16, 272 — 9271 4+ 20 = 0.

16. gzt + b2t + ¢ = 0.

17. 4(1 + é)z - 4(1 + i—) =

18. 22+ 10 — 6vV2 +1 = 0. £\
19. z¢ — 82® + 2347 — 28z — 8 = 0.

Hint: Write the equation in the form ) \’ \\
zt — 82° + 162% + T(z2 — 42z) — 8 = 0. W W

20. 7' — 429 + 222 + 4z — 3 = 0. A

21, 2t + 223 22 — 4 = 0. m'\i'

22. 3z 4+5—~vV1—-3c=0.

23, 252: + 1022 4+ 10 - o7 \\,,
241 z o\;,
24, a(az + b)2 + blax +b) + ¢ = 0. 5:3

25. Vz + 104 Vz + 10 = 2. A

52. Theorems concerning the. t{iofs of quadratic equations.
TreorEM 1. If r is a root of the equation
a:c<’+ bx+c¢=0, ¢))]

then (x — 1) is a f o( of az? + be + ¢. Comversely, if (xz — 1)
is a factor of ax? +bg + c, then r 18 a root of the equation.
Ifrisa root o{ thie equation, then

x'\ art +br+¢=0. (Why?) (2)
We m%‘now write
ax ¥ br +c=azt + bz +¢ — (@ +br +¢c) (Why?) (3)
'\
~\J =a(@?—1) +bz—-71 G
N = (z — r)(az + ar + b) 6y

Hence, (z — r) is a factor of az? + bz + ¢.

Conversely, if (z — r) is a factor of a2 + bz + 1 then the
Substitution of r for z makes the factor (zx — r) vanish. Hence
a2® + br + ¢ takes on the value zero and r is a root of

az +bx +c=
The student should study the special case for r = 0.
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EXERCISES
Form quadratic equations of which the following are roots.
L 31

Solution: When the right-hand member of the equation to be formed is 0,
the left-hand member has factors (x — 3)and (z - 1). Hence,

-3N@—-1)=x2—43+3=0 ~

is a quadratic equation with roots 1 and 3. There are, of course, an ifldeﬁmte
number of other quadratic equations having 1 and 3 for roots, for\yfe can

. multiply through by any number; for example, 222 — 8z + 6 = ()‘,.‘89:2 - 12z
+ 9 = 0, have roots 1 and 3. \

,‘ 2. 3,2 9.2+ V32— 3
3. ~-13 10. 144, 1 — 4 where ¢ = — L.
4.1, - 3. (See Art\d7.)
6. — 1, — 3. 11— 2, Bt 2.
6. 7,0 1D

« - '1' . 12, 5,5.%

; %

| gy OV

I ]:3-"3) —

ﬂ 8. V72,2 A\ M

‘ 4. a—ba+b W

N

16. Verify by performing the‘i;i(ficated operations that
a(x - 4’*‘\2& V:Z-‘l‘”)(x _ ‘b‘z\ Vabz—4aC> — a2t + be 4 o

L ,
53. Number of roots. In order to avoid certain exceptions, an
equation f(z) =®is said to have as many roots as f(z) has factors
of the typec(x "~ r) where r; is any number. A factor (z — 1)
may be r '}é’ted. For example, if ( — r)%is a factor of f(x), we
say thaf;f(x) = 0 has two roots equal to r,.

Wehave shown that 5 quadratic equation has two roots. The

question arises: has it only two or may it have more? This ques-
\”\gio’n is answered by the following

TaEOREM IT. 4 quadratic equation has only two roots.
Proof. Suppose there is, in addition to

rno= 20+ VB —dg oo b — VB = 4g0
—’\, 2 =E — - T
2a 2a

a third root 7y, distinet from r, and 72, of the equation

az® + bz + ¢ = 0,
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By exercise 15, Art. 52, ax? + bz + ¢ = a(z — r)(z — Ta).
Hence if 75 is a root,
a(rs — r)(rs — ry) =

But this is impossible since no one of these factors is zero.
(IT1, Art. 5.)

54. Special forms of quadratics. In the typical quadrati¢™\
a2? + bx + ¢ = 0, ¢ is often called the known term, and bz.thd
term in x. Either the known term or the term in z or bot{i ‘may
not be present, but we still have a quadratic equation though it
consists of only one or two terms. Such quadratiqs"éme often
called incomplete quadratics.

If ¢ = 0, a2® 4+ bz + ¢ = 0 becomes az? + bz —h Since z is a
factor of az® 4 bz, we have one root equal to\0v" If oothdbraulibrary .
are 0, the equation becomes az? = 0. Now'ﬁ‘i‘s a factor, or z is a
factor twice, and we have two roots equal'to 0.

Ifb=0butc=0,a22 +br +¢ £\0reduces to az® + ¢ = 0.

In this case,z = = {/ — < That ié, the roots are arithmetically
a RS

~

equal, but opposite in sign. j:':’

( EXERCISES

Determine % so that{s\ch of the following equations shall have one root
equal to zero.

L 3x2+6x—5+2k—0

Solution: Ong root only of the equation ax® + bz + ¢ = 0 is zero when
¢ =0 and a\‘ are different from zero. In this exercise, a = 3, b = 6,

5

= - 5*4}270 In order for ¢ to be zero, k must equal 5

2. 2z2——+k—4k2—0

ot ortmomm_3=o

Determine & and m so that each of the following equations shall have two
roots equal to zero. |

4322 + 8mx 4+ 2%z +m —k+1=0.

6. ¥4+ 8my—ky+y+k—1=0.

Determine % so that the roots of the following equations may be arith-
etically equal but opposite in sign.

6. 422 + 2kz 42+ 5 = 0.

T 922 4 kg 4 hr — 22 = L.
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66. Nature of the roots. In Art. 50, we found the two roots of
the quadratic equation
a4+ bz +c=0
— b+ Vi — 4ac ~b— Vb — dac.
2a r = 2a

In case a, b, ¢ are real numbers, the numerical character of these
roots depends upon the number b2 — 4ac under the radical sign,

. N
An examination of 7 and r, leads at once to the following, éonclu-
. 4 0\ w
sions:

(1) If b2 — 4ac > 0, the roots are real and unequa(lril,
(2) If b — 4ac < 0, the roots are imaginary an,dz'unequal.
() If b — 4ac = 0, the roots are real and eqn@l.

It should be observed that if the coeffi iénts are real and one
root is imaginary, then both roots are imaginary.
The quantity b2 — 4ac is called the dis}riminant of the equation

az? + bz +.’c'~="0.

tobe 7 =

56. Sum and product of the toots. If we add together the two
roots of az® + bx + ¢ = 0, wé Have

—b+\/b2,"—4;ac+ —b—~ Vb —dac_ b
2a\ 2a e
If we multiply the\%‘o”roots together, we have
<.~1b'+ \/b2—4ac> b — Vb —4ac\ ¢
e = NG ——— )| —— Y T %ac = —-
Ay 2a 2a a
Hence: \\
L ZQesum of the roots of a quadratic equation in x 7s equal to

the c(’g{‘eﬁcz’ent of © with its sign changed, divided by the coefficient of z*.
YL The product of the roots of

L4+ 1y =

@ quadratic equation in x is equal

\ to the known term divided by the coefficient of z2.

EXERCISES
Determine the nature of the roots of the following equations.
1822 + 11z — 4 = ¢, 4. 622 — 42z 4 3 = 0,
2. 224+ 2x 43 =0, 6. 72* + 4 = 0,
3. 2522 — 20z 4+ 4 = g, 6. a%2 + b2z = (2,

Determine the real values of &

so that the two roots of each of the following
Squations may be equal,

782+ 8kz 43k 49
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Solution: In order that the roots of this equation may be equal, it is neces-
sary that b — 4ac = 64k — 96k — 64 = 0. Hence, k£ must be a solution of

64k — 96k — 64 = 0, 0r 2 — 3k — 2 = 0, or k = — % or 2. Substituting

= — % in the above equation, we get

8t ~ 4z + 1 = %(4:;'— 1 = o.

With & = 2, we get A\
82 + 16z + 8 = 8(z + 1) = 0. N
8. 224 3kz+k+7=0. 18 k2t kz+1 =0 L\
9. 22+ 2kz 4 3 = 0. Whkrte+k=0
10. 22° + 6z + & = 0. 15. 22 + ko + k& = 0\
11 kz* + 22+ 3 = 0. 16. 8z = 2z + lc)?;\‘
12. k22 + (b + )z + & = 0. 17. (b = D)2 %082 +whvdr. dbealilibrary .
Determine by inspection the sum and product qﬁ:&}e"roots of the following
equations. -
.
18. 322 — 2z + 7 = 0. 22. A" @’z + 12 = 0.
19, 522 — 8z + 10 = 0. a8 ot =
20. 22 + 13z — 5 = 0. R\
2L 7 — 3z — 22 = 0, W g P 1
NPT+ =0

Determine the value of k:inff:he following equations.

26. 322 — 20z 4+ k = (Q}hére one root is 7.

Hint: See Art. 20 where ““root of an equation” is defined. Can this exercise
be solved by using t\h’e theorems of Art. 56?

26. 22 + Lz 7 ®= 0, where one root is 1.

27. da? —16%'+ 3k = 0, where the difference be-
tween the ,Q)ots is 5.

28. 731; * kx — 12 = 0, where a quotient of the
two 31"0)9"65 is — §
£ \© 7

57. Graph of the quadratic function. In
Chapter ITT we have plotted certain quad-
fatic functions. It can be shown, if @ is
bositive and different from zero, that the Fre. 12
81aph of the function ag? + bz + ¢ has the i
S8e general characteristics as the curve in Fig. 12. This curve is
¢alled a parabola. The real roots of the equationax? +bx +c¢ =0
are given by the abscissas of the points where the curve crosses
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the X-axis. If the curve has no point in common with the axis,

VLAY I then the roots of the equation are imagi-

| nary. For we have shown that every

\ \ I quadratic equation has two roots, real or
\ \ /1] ; Imaginary. If the curve touches the X-
\ / axis, both roots of the equation are real

l and equal. These three cases are shown in\
Fig. 13, where the graphs of 22 — 2z 3,

\ \ / 22—-2r+1,and 22~ 2z + 5 are, given.
O
\ / .
N EXERCISES .\
N
o[ ] X Construct the graphs of the f:fmctions in the
\ / following equations, and, by'méasurement, deter-

mine the roots if they ars\real. Calculate the
value of the function fe{ at least ten values of
between the limits g‘ié%n.' Choose the vertical
unit of such a lengph\bha:t the graph will be of con-

Fia. 13 venient proportious-for the cosrdinate paper.
La2—4z43 = 0, from z =0to":§:'= 4,
22 +2—12 =0,fromz = =40z = 4.
8. 422 + 122 + 5 = 0, from g%V — 4 to ¢ = 1.
4, :c2—4x=0,fromx=w"—-li;0x=5.
5. 242 +2 =0 froma = —3toz = 2.
6.22— 62—~ 7=0%0Mz=—2t0z =8,
7. 6—3:c—x2=., romz = —5tozx = 2,
8. x2+2xi.i1’:="0,fromx= —4tox =+ 2
9. 4 — 52 L% =0,fromz = — Ttoz = 2,
10. 2> -4 &0, frome = — 3toz = + 3.

11, Vi%b ‘are the general characteristics of the graph of the function
02? + &5+ ¢ if ¢ is negative? It b = 0? It c=0?
AN
~O PROBLEMS
! )
s \ 1. Find two consecutive positive integers whose product is 462.
2. Find two consecutive positive even integers whose product is 1368.

3. In the course of Steinmetz’s solution of the problem of finding the
current strength in a divided electric circuit, it is necessary to solve the
equation

22 2
for a. His solution is PHoat 0
st @2

222

' where g2 = Vgt — 47252, Verify the result,
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4. If a ball is thrown upward with a velocity 2, the distance d from the
earth to the ball after a given time ¢ is given by the formula,

1
d = vt — Egﬁ, (6]
where ¢ = 32.2. The speed at the time £ is given by
Ve =9 — gt (2)
If the ball is thrown downward with a speed vy, the above formulas become
1 .
d= tol + Egtz, . (3)\
U = U + gt 4 \'.\(4)

If a ball is thrown upward with a velocity 60 feet per second, in i&;Bat time
will it be just 40 feet from the ground? Explain the two answers,

5. How long will it take the ball described in problerd 4 Mo reach the
.

ground? AN
Hint: Put d = 0in formuls (1). \% www.dbraulibrar
6. At what time is the velocity of the ball zerg?\\ J
7. How high will the ball rise? \ ¢

8. How far does the ball rise in the secqm{ second?
9. How long will it take a ball to fa’llg.S.OO feet, if it is thrown downward
with an initial speed of 50 feet per second?
10. How much longer would it take the ball in problem 9 to fall 500 feet
if it had been dropped with no inidial velocity?
1L If a body falls from rest,“how far will it fall during the fifth second?
12. If a body is throw'n-‘"d}vvnward with an initial velocity of 10 feet per
second, how far will it fs{lxdi’lring the fifth second?
13. A drives his cat\b miles per hour faster than B and covers 180 miles in
one half hour less that'B. Find the speed of A’s car.
14. By incrf{ts:irrg the radius of a sphere 1 inch, its volume 1:s increased
10 cubic in({hg’s,., Find the radius of the original sphere to two decimal places.

(VOhHIl.e\Q\a“ sphere = %m‘"’.)

16, 'I;he edges of a cube are each increased in length 1 inch. It isfound that

the i’}?l{lme is thereby increased 10 cubic inches. What was the length of the
Qdke of the cube?

18. The diagonal of a square is one unit longer than the side of the square.

at is the length of a side?

17. A rectangular sheet of tin whose dimensions are ¢ and b ha!.s square
corners ¢yt out, and the sides turned up to form a box. The box will havea
Maximum volume if the depth z is a root of 12z — 4(a + b)z + ab‘= 0.
Find this depth. Also find the depth when the rectangle is a square of side a.

18. Show that the equation

24+bz+c=0
has one positive and one negative root if b is real-and ¢ negative.
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19. In joining together two steel boiler plates with a single row of rivets,
the distance p between the centers of the rivets is given by the formuls

p= 0.56%2 + 4,

where ¢ is the thickness of the plate and d the diameter of the rivet holes. In
a boiler the rivets are to be placed 11 inches apart. If the thickness of the plate

is % inch, what is the diameter of the rivet holes? ~

20. Graph on the same set of codrdinate axes the function 222 — T NG
where ¢ takes on the values 2, — 4,0, 8. What effect does changing the)con-

stant term in a quadratic function have on the graph? '\
21. Graph on the same sheet the function az? — z + 3, wheré, a'fakes the
1 P

1 1 . . S )
values 5, 1, 2’ 10’ 100" Decreasing the coefficient of z? gbward zero has

A\
what effect on the graph? What is the effect on the ro"o‘t% of the quadratic
equation a2? — z 4 8 = 0, if ¢ is made to approach 02\Y
22. If s is the area in square inches of the flatsend of a boiler, and ¢ the
thickness of the boiler plate in sixteenths of s’gli.nch, then the pressure p

per square inch which the flat end plate cah( shfely sustain is given by the
formula {

_ 2000 & 12
P S=6
What should be the thickness to‘t}i’é n:earest sixteenth of an inch of the boiler
plate for the end of a boiler 20 ineKes in diameter to sustain a pressure of 100
pounds per square inch? 4
23. Let & be the height gfﬁaY the thickness (in feet) of rectangular masonry

retaining wall. For ve{z\sé’ndy soil with a grade angle of 20°, h and ¢ are con-
nected by the equation

29 E+0.19 - h — 0.1842 = 0.
What should be the thickness
feet high? ("
24, ]{‘Q{loam, the equation in problem 23 would be
A\ #4014t - b — 0.183k2 = 0.

¢What should be the thickness of a retaining wall four feet high?

o~ . .

\ % 2b. A long horizontal Pipe 18 connected with the bottom of a reservoir.
If. H _be' the depth of the water in the Teservoir in feet, d the diameter of the
pipe in mchfes, L the length of the pipe in feet, and » the velocity of the water
in-the pipe in feet per second, then according to Cox’s formula

Hi_ 49 4502
L " T1200
Find the velocity of water in 5 5-in¢
& reservoir containing 49 feet, of water.

(to the nearest inch) of a retaining wall four

h pipe, 1000 feet long, connected with

26. In a group of points every point is connected

. . with every other peint
by a straight line. There are 105 straight lines,

How many points are there?
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27. The so-called effective area of a chimney is given by
E=A-06V4,

where A is the measured area. Find 4 when E is 24 square feet.

28. The electrical resistance of a wire depends upon the temperature of the
wire according to the formula

B = By(1 + at + bi?),

where a and b are constants depending on the material, R, is the resistante
at 0°, and R, the resistance at ¢°. For copper wire ¢ = 0.00387, b = 0.00(}({0597,
and Bo = 0.02057. At what temperature is the resistance double that st 6°?

29. The radius of a cylinder is 10 and its height 4. How much can bé added
to either the radius or to the height, and yet give the same increae T volume?

The following equations occur in some electrical problems'\ (4,

30. g = Solve for R.

R
aln — n')
1+ b(n — n)?
RW(r? + z2) )
m - Solve for z. ) ’..'“ s

33. In making war bread a mixture ‘ofirye and corn meal was used. From
a hundred pounds of rye flour a cp-rfzﬁﬁ amount was taken and replaced by
corn meal. Later, from the mixture the same amount was removed and again
replaced by corn meal. The fesulting mixture was 16 parts rye to 9 parts
corn. What were the proppriions in the first mixture?

34. A stone is droppé&\in’oo a well, and 4 seconds afterward the report
of its striking the wateryis heard. If the velocity of sound is taken at 1190
feet per second, wh?,t;is the depth of the well? (Useg = 32.2. See problem 4.)

3. A quadméc. Jexpression in z is positive except when — 1 < z < 3.

- Another quadsdtic expression is always negative except when — 3 < z < 2.
When & =.\0;bdth expressions take on the same numerical value but are oppo-
site in sign," For what values of = are the two quadratic expressions equal?

9 www.dbraulibrar;

i
3. T = Solve for (n — w), L ¢

Q"

32. P =



CHAPTER VIII

SYSTEMS OF EQUATIONS INVOLVING QUADRATICS

58. Quadratic equations in two unknowns. An equation of the{™\

form A
A2+ Bzy+ Cyp* + Dr + Ey+ F =0, \(1)

in which at least one of the numbers A, B, or C is not zex:(yz is called
the general quadratic equation in x and Y, or the general equation
of the second degree in x and y. AN

ORAL EXERCISES \.’
By comparison with the general equation, (L)\g‘iVe the values of 4, B, C,

D, E, and F in each of the following: AN\
L2442 —-256=0. 45 — 12y = 60.
2. 922 + 16y = 144, 55: — 4z — 6y — 16 = 0.
3. 2y = 25. . o886, ¢ = 307 — 62 4 12,

)

We shall be concerned ig"thls chapter with systems of equations
of certain special formswhich will be found useful in solving some
interesting problems\< ~

59. One equai:mn linear and one quadratic. Any system of two
equations in #wo’ unknowns in which one equation is linear and
the other i§’quadratic can be solved by elimination of one un-
known.\ First solve the linear equation for one of the unknowns
in term\f the other, and then substitute in the quadratic equation.

¢ EMmple 1. Solve the system

\3“ 22 4 y? = 25, (n
z—y =1 ¥)
Solution: Solving (2) for y in terms of z,
y=z—1 €Y
Substituting z — 1 for g in (1),

224 (z — 1)2 = 25, @

From (4) 22 — 22 — 24 = 0,
or 2@ -z —12 =0 ®

L 7 38
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Solving (5) by the formula
_1vV1+48
2
=4or — 3.
Substituting 4 for z in (2), we obtain y = 3.
Substituting — 3 for z in (2), we obtainy = — 4.

L z =4 r=—3 .
This gwgs { y =3 and { v —4 for the solu1:10ns.v L
Check these solutions by substitution A\

in (1) and (2).
Graphical meaning of the two solu- 5
tions. The graph of ol
r—y=1 (2) y
is the straight line shown in Fig, 14,
and the graph of

2?4 = 25 6

is the circle there shown. To draw /N
the graph of (1), the student may give
various values to z and ecalculate ™ ,
the corresponding values for y fromg ’: > ¥
¥y =+ V2 — ™Y Fia. 14

Any point on the circle (1) has ,coo«rdmates that satisfy equation (1). Any
point on the straight line (2) has codrdinates that satisfy equation (2). The
points (4, 3) and (— 3, — i)\Lle on both graphs, and satisfy both equations
(1) and (2). That is to say\edch point of intersection of the graph of (1) with
the graph of (2) gives a}agr of numbers that is a solution of the system.

X VoW raofibrary

Ezxample 2. Solve {&he system
K7/} i Ty = 24, 1)
o y—2+2=0 2)
Solution.: ; Sdlvmg (2) for y in terms of =,
N y=2z—2 )
Substitdting 2z — 2 for y in (1),
AN (20 — 2) = 24, )
<\‘:“ 222 — 2z — 24 = 0,
n2—zx—12 = 0,
or (xt+3z—4 =0 ®)
Thus z=40r —3.
Substituting 4 for z in (1), we have
y = 6.
Sllbstituting — 3forzin (1)
. y=—8
This gives { r= é and { r=- g for solutions as may be verified by
y = ==

Substitution in (1) and (2).
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y Graphical meaning of the so~

lutions. The graphs for equa-

tions (1) and (2) are shown in

Fig. 15. The graph of
y—22+2=0

N is the straight line, and that of

% x oy = 24

is the curve with two brancheS\
N as shown. This curve belongs
to a class of curves calléd hy-
perbolas. The pointy”ofvinter-
section, P and @, pax?é codrdi-
nates that are tHe selutions of
the given system’.> All points on
Y’ the graph of; (l}have codrdinates
F1a. 15 that satisiyy€quation (1). All
pointg ‘en’the graph of (2) have
codrdinates that satisfy equation (2). Therefore, ;t}é points of intersection
have codrdinates that satisfy both equations, .”,\
Ezample 3. Solve the system )

z? + o A .'2‘5," 1)

¢+ y="10, @
and draw the graph to explain they = Y

fact that the solutions are not,real®

If the student carries out thidsame
method as that illustrated™\in Ex-
ample 1, he will obtain’\(bx solutions

x =25 -}-% 2, =
ANY¥ | |
y"\:;:\s 2 % x7 ] _a X
A\ . | Yt 11117
and '.‘\a: -5-2v3 \_S_J:‘“4
N3 27 ERNEEE -
{ ’\: . T-‘j‘
\”\3 - y = 5 + %}‘\/5,
. Y/
where 12 = — 1, Fi1e. 16

Check these solutions by substitution in (1) and (2.
Thfe graph .of equatiop (1) is the circle shown in Fig. 16, and the graph of
equation (2) is the straight line there shown. Tt is to be noted that these

graphs do not intersect. This fact means that there exi i
. b 1 e
bers that satisfies both equations (1) and (2). Fiano pair of realnu

1 60. fol.nments on the graphs of quadratic equations in two variables.
! o analytic geometry, a detailed study is made of the graphs of quadratic
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equations in two variables. A general notion of the shape of the graph of a
quadratic equation in two variables may be given by considering the curve
formed by the intersection of a plane and a right circular
cone. On this account, the curves are called conic sections
or merely conics. The cone used in this connection is the
double cone as shown in Fig. 17. A conic may be a circle,
an ellipse, a hyperbola, a parabola. In addition, the graphs
of certain quadratic equations may be a pair of straight lines,
or a point. The graphs of a few equations of standard forms
will now be briefly discussed.

(1) The graph of an equation of the form
Az + Ayr = C,

in which 4 and C have the same sign, is a circle with .

its center at the origin and with its radius equal tg)'\§’ Fie. 17

\/f—i Thus, 22 + 42 = 9 is a circle with its centeht tile%‘fiéfndg’ﬁ'&%]fi brar
radius 3. s \\:

{2) The graph of an equation of the form ‘\ v

Ax? + Byt = 0,:' )

7

"
in which A, B, and C have the same(signs, but A # B, is an oval-shaped
figure called an ellipse with its eemer at the origin and with symmetry
about the X- and Y-axes. Thus, the graph of 4a* + 9y = 36 shown in

Qv
N [
S |
i (0,2
N l/ |
N (3,0), X
I 0
\:"\s.
A\ M N
O
2\
\ 3 Fie. 18

Fig. 18is an ellipse which crosses the X-axis at (£ 3, 0) and the Y-axis
at (0, + 2).
() The graph of an equation of the form
Azx? + B:l[2 = 01

in which 4 and B have opposite signs, and C 5 0, represents a hyperbola ;

with symmetry about the X- and Y-axes. The byperbola has two separate

parts (Fig. 19). Thus, the graph of 42 — %* = 36 shown in Fig. 19is a

hyperbola which crosses the X-axis at (== 3, 0).
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Y
N
N

\ /
g (3,0D x

y \ ~

I~ C RGN
NS *
F1e. 19 « M
N
(4) The graph of an equation of the form O\
y=ar? 4 bxr + ¢ 'mz\\

represents a parabola as explained in Art, 57.
N\
)
EXERCISES AND PROBLEMS

4 . . .
Solve the following systems, verify each 884, 6f roots by substitution in the
given equations, and draw the graphs in’gxerbises 1,23,7,3,09.

Loz 442 =13, LN, 322 — gy = q
T4y =5 &Y z—2 =2
2. 224y =13, 310, 2z -3y + 3 =0,
2z + 3y = 13. 42 + 9y — 6ay = 63.
R L e 11 4z 4 3y = 3,
=Ty =0. \\ 1,1
4= =5
4 20+ 3y = 7T\ 2ty
zy + yt =.\’5~. ™ 12. 3y — 4z = 16,
5. (3 —2y =1, 6, 4
" +~€'€}F'6x —2 =6 p +§ = 1.
6. a2y = 5, 18. 3u+t 4 =12
G2y =6, 9u? + 1602 = 144,
" 2 —y = 4, 14. 0.3u + 1.1250 = 3u,
AN A+ Oyt = 72, 2.25uw + 3.50 = 34,
) 3
\ 8. Ty = 4,
Yy —~2r =2,
Obtain to two significant figures the solutions of the following:
16. Ty = — 0.4, 16. 2 — 415 = 0.38,

3.1z - 0.63y = 4.3.
17. The perimeter of 2 rectangular athl
area is 64 acres. What are the dimensiong?

18. The difference of the two legs of a right triangle is 7, the hypotenuse
i817. Find the sides of th

e triangle,

2 — 0.37y = 0.2,
etic field is 2248 yards, and the



EXERCISES AND PROBLEMS 93

19. Find two consecutive integers the difference of whose squares is 31.

20. The difference of the areas of two squares is 900 square feet and the
difference of their perimeters is 40 feet. Find a side of each square.

21. The sum of two numbers is 10, and their product is 9. Find the sum of
their squares, and of their cubes.

Supplementary Exercises
Find the values of @, b, ¢, or r in the following exercises so that the straight
line which is the locus of the first degree equation

(1) cuts the other locus in two distinct points, 7 A\A
(2) is tangent to the curve, NS ©
(3) fails to meet the curve. A\ by
22. 2+ 2= A N
3z 4 4y = 5. '\\ ;
The locus of the first equation is a circle with center at the.originendibrary.
radius equal to r. 9
. . iNY
Solution: From the second equation, we ha,vg'\ &
_ 5= 4N
=5

Substituting in the first, we find &N
257 — 40y 4295 — 9 = 0.
] g 0Vt — 1
Solving for y, we obtain, yr= 11_9_:5:_3%L___ :
If y is real, 72 — 1 must d:?ex\ équal to or greater than zero.
Furthermore, if » js )q} number greater than 1, the two loci intersect in
real and distinct poirts,
If r = 1, there iy o’ﬁly one value for y, and the line is tangent to the circle.

It r < 1, the ling-does not intersect the circle.

23. 22 +\¢~= r, 25. 22+ y* = 25,
TNy = 2. az + 6y = 1.
24,0504 2 = 25, 26. 2%+ y* = 25,
DNty = Tz —by =3
\\ 27. For what values of b in terms of  and m does the system of equations
y=mz+Db
g4 yr=12

have equal solutions?
28. Determine the relation between a, b, m, and k such that the system
Yy = mr + k;
2,y
e te™
has equal solutions.

29. Show that the straight line 3z + 4y = 25 is tangent to the circle
# + 4 = 25, and find the point of contact of this tangent.
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61. Both equations quadratic. When both equations of a system
are quadratic, the problem is often so difficult that the system
cannot be solved by methods at our disposal.

As illustrated in the following example, the solution of a pair
of quadratic equations often reduces to the solution of an equation
of the fourth degree.

Ezample: Solve 224+ +—-9=0,
242 -3y —8=0.
Subtracting the second from the first, we have )
"N
—p 43y tr—1=0,
or z=1-3y+ 4~ ..:N:'

Substituting in the second equation, we have
A-3y+ 9+ 2 -3y~ 8=
or yt — 6yd + 13y ~ 9y — '7\¥.‘0.

b 3
N

At this stage of his progress in alge}:zra;;\che student will not be
able to solve a genera] equation of, the fourth degree, hence he
cannot proceed with the solutioni0f this problem. There are,

Y, oHowever, some forms of such
| 43" equations for which we may
g 5 WA easily obtain solutions. In Arts.
7, AN 62 and 63 we shall consider a few

- such equations.
X When both equations arequad-
\ N / ratic, the system ordinarily has
N /A four different solutions. When
R == each of the four solutions is &
X K ! pair of real numbers, the graphs
A Fra. 2 in1‘iersg_ct in four points whose
OV cobrdinates are the solutions as
m Fig. 20. When two of the four solutions are real numbers and

two involve imaginary numbers, the graphs intersect in only two

points. When each of the four solutions involves i i
imaginary num-
bers, the graphs do not intersect. Fnasy

62. Both equations of the form ax? 4- by*4c=0. If instead‘
. . * s
of considering z and y as the unknowns, we consider first 22 and %’

;:.s the unknowns, the method of solution is that for linear equa-
10NS,
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EXERCISES

Solve the following systems of equations and give the graphical representa~
tions for exercises 1, 2, 3, 5, and 6:

1 1622 + 27y = 576,
2+ 2 = 25.
Solution: Solving for 2? and y? we have
l 576 27 l 16 576 ™\
25 1 -~ 99 1 25
2 = = 2= e 290
“ l 16 27] s y '16 7T 710
1 1 1 1 4 N
£ = 3 y=4 a4
Hence, we find the following four solutions, o \

AN
(3) 4)7 (— 3) 4)’ (3) - 4): ("" 3; 4)': www,dbraulibrar}
To show these solutions graphically, we plot the g{aphs of the two equations.
Solving each f h S \/576 — 4%,
g each ior y, we have y=: —W

and y = £ V25" 12
o5

The first 'equation has for its grapha:f,l’ eﬁipse, the second, the circle (Fig. 20).
The points of intersection represent‘graphically the four pairs of solutions.

3

2. 24y =25 S 5. at+ =25
9% 4 25y = 225, ¢ 9a? — 16y* = 0.
8. 2% 4 4y = 25, "i’ 6. 2+42=9
- 2 =1, \\ 9x? + 16y* = 288.
4 @ — A5, T. 4u? + %2 = 144,
922 + 16324£/160. u? + 02 = 25.
Obtain tof‘(;vs?o significant figures the solutions of the following:
8. (2 +p2=09s 9. @ - = — 41,
A3g? 4 9.1y = 88, 1.92% 4 0.21y* = 3.6.

40%Find four pairs of numbers such that the sum and difference of their
~8quares are respectively 265 and 23.

63. All terms containing unknowns are of the second degree.
Equations in which each term containing an unknown is of the
i, second degree have no first degree terms. Two methods of solu-

tion of such equations are illustrated by the following example.
Ezample: Solve 22+t =20, ®
z? 4 3zy = 28. ()]
First solution: The main feature of the first solution is that we obtain a
factorable second degree expression by the elimination of the known terms.

0 do this, we treat our example as follows:
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140. @)

Multiply (1) by 7: Tz + Ty? =
Multiply (2) by 5: 5x2 4+ 15zy = 140. (4)
Subtract, (3) — (4): 222 — 15zy + Ty* = 0; or,

(y — 22)(Ty — 2) = 0. 6)

By equating each factor of (5) to zero, we obtain two linear equations:
y—22=0 and 7y —zxz = 0.

. O\
It remains to solve each of these equations with (1) or (2), say with (1)

Thus, we are to solve the two systems: i :\*\‘
y—2x =0, \ (6)
7+ y? = 20; R ~oM

and y—z=0, PR )
22 + gt = 20. Pale; (9)

Solving (6) and (7), we get the solutions (2, 4), (— 2, ’—"213), and solving (8)
and (9), we get (z\/l—o, 1\/E> (_ Z\/F) _ 1\/@ )

Second solution: The main feature of the secoha‘solutxon is the substitution
of y = mz in both equations.

L >

By setting y = ma in (1), we have o\ ¢
22+ mip? = 2(}; N
’.' %20
whence nE S (10)
By setting y = mz in (2), WeJ@*ve
I\%Bmﬁ = 28,
28
h p 2 = .
whence K O 2 =15 €3
Equating these v'ahlés of 22 in (10) and (11), we obtain
\“ 28 _ 2

15+ 3m m - 1+ m +mt
Cleal;mgbf fractions and reducing, we obtain

"\ . Tm? — 15m + 2 = 0,
~\J )
of m = 2, or 7
| e . 28
Substituting these values of min 22 = ’
14 3m
! we find, for m = 2, P =4,1= 42

1‘ ' Yy=mz =44
i
]

1 98 7
Form=7rweﬁnd x2=€vx=i5\/ﬁ=:!:4.43+,

y=mz= d:%\/ﬂ) = 0,63+,
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The solutions are therefore

@4, (-2 —4), (g Vo, éx/i)),
(_ V1o, — %\/1—0>.

The graphs of the two equations of
this exercise are shown in Fig. 21. The
geometrical interpretation of the sub-
stitution y = me is also shown in the
figure.

EXERCISES
Solve each of the following systems

of equations and plot the graph in the
case of exercise 1:

1. zy = 15,
2r — y? = 186,
2 22 4 zy = 4,
¥4+ oy =1.
8. 2y + 4y =8, .
2 + 3zy = 28. .
4, 20 — 2up = 15, N

202 + 6uy = — 7.

B. 202 4+ 242 — xy = 32,’\
22 4+ 3y + 2zy<—'\19.
6. 2 — 412 =09, \
st 22 =@y
A\ X

Y

A
7
\
A
[ TR
1] 170 Iy X
N
‘Q 2 P
Vi o
\ TN
/| <
. .
F{@:?ﬁi

1. 1’2;:337?/ Z*'_zz: : g‘oov'ww.dbraulibra

8 AVt =45
.~x’+‘y+x—'y=10_

e —y z+y 3

N9 (@ -9 +22) =0,
9r? — 4y* = 36.

10. 32t — 2y = 2,

222 — 3zy + yt = 3.

11. 22+ 2zy = 5,
22— zy + 4 = 3.
12. 222 + by = 22,

2+ zy 4 22 = 11,

Find to tvy'c;siéniﬁcant figures the solutions of the following:

13. 22 0 22y = 104,
2 Lday = 21

14, zy = 2.3,
2 + 1647 = 8.3.

, 1683 Find two positive numbers such that their sum multiplied by the greater
#8180, and their positive difference multiplied by the smaller is 27.

64, Symmetrical equations. An equation is said to be sym-
etrical with respect to x and y whenever interchanging x and y
leaves the equation unchanged. The typical form of a symmetrical
Quadratic equation in two unknowns is

A 4 o) + Bzy + D +y) + F = 0.

The solution is illustrated in the following.

Ezample: Solve

g2+ypr+et+y=5
oy Lo Ay = 5. (2

1
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Solution: Let z = u 4+ v, y = v — ». Substituting in the two equations
we obtain after reductions

Wt U= 4, @)
w— o+ 2u = 5. 4
Eliminating ¢* by adding we obtain an equation in u,
2u? + 3u =9,
from which u = gor -3
The four solutions of (8) and (4) are then K4 M)’
(g %) (g _ %) (-3,v9), (-3, -v®. O
From the first pair “‘ 3
: 3 1 (&
x—u+v—2+§—2, m\
3 1
y=u—p=§_—§=l.‘\\:
&/
In a similar way we find from the other pail;s,’; )
z = 1}’ z = —3+N§}”., = —3—N§}.
y=2 y=-3-iV2[\" y = —34+4V2
EXERCISES
Solve the following systen}is\é‘f equations:
1 Ty = 6, '\i‘..} 4, 22 4 42 = 30,
2 4 2 =13, ‘\ 322 + 4day + 32 = 54
2. x2+y2.s—r.;13=0, ' . s+t+2st4+4=0,
xy—2x—:2gls+4=0. 42+ 254 2t = 8.
3.(x+y)f\*—:l'—.\:5’+y=2, 6. 224 yr—z—y—22=0,
2=vy‘$e;,.+y+3=0. 24 oy + 92+ 20 + 2y = 29.

66.8pecial devices. Many systems of equations of degree
Jug[h}:r than two, and systems containing three or more unknowns
\may be solved by combinations and variations of the above
n‘1ethods, but these methods do not by any means apply to all the
simultaneous equations whose solution can be reduced to the
solution of the quadratic. Usually the solution of a system of
this kind is such that special devices should be employed. What-
ever method may be used it must be kept in mind that the ulti-
mate test of_ a solution is substitution in the given equations.
Many equations coming under the types solved in Arts. 60-64
mmay be solved more easily by other special methods.
.
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For example, exercise 1 in Art. 64 may be solved as follows:
z? + y? = 13,
Ty = 6.
Multiply the second equation by 2, add this result to and subtract it from
the first equation, and thus obtain the system
:c’~'+2a;y+y = 25,

—2zy4y* =1
Extracting the square root of each, we have O
T+y==x5, A ¢
T—y==1 ( \“.\
From these equations we find the same four results which were‘obtamed
by the general method for solvmg symmetrical equations. " (‘"«:

In the exercises which follow, a number of snch devices are
suggested. ¢

www.dbraulibrai
MISCELLANEOUS EXERCISES AQD\PROBLEMS
INVOLVING QUADRAZI‘ICS

Solve the following systems of equatlons ‘Check your results in exercises

1-5 by means of graphs. &N
L z4y=3 .' 1 1_
22 4 y2 = 29, N 9. z g 5,
2.z 6 =0, "4 1,1 _
y+6 = KN 5t =2
TTvsh Y 10. 22+ 2zy — 5% = 1
S Nl . X - =1,
5 Zfﬁ - 16’ ) % — 3oy + 447 = 16
= 4z XN\
) 11. Yy = 2,
4. —y,=\1‘5 2+t =4
9562—}-16&-160 120 z—-y=4
5. 422 4792 < 36, o — P = 988.
O =0 Hint: Divide second by first.
8. @+ oy + 42 = 2, 1,1
l"\o 23—yt = 56, 355-}-:[?:34‘,
\ ) Hint: Divide second by first. 1 _ 45
xy
T @y tp=o
16 , 27
2 — By 4 22 = 0, 14. 2+?=576
1 1 1
8 — - 4= =
o +28 =0, i 7
Lo1_4 15. 207 4 Tay — 1552 = 0,
z oy -20—1)y—z+2 =0
Hint: Reduce to four linear

Hint: Let 1 = 2,1 = q; find 2
x y
and w; then find ¢ and .

systems by factoring the left side of
the first equation.
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16. m2 4+ 2n2 = 9,
nt 4+ nm = 2.
zy = 6,
22+ 4y = 24,
Hint: Multiply the first equation
by 4, add to second, and solve for
z + 2.

17.

22 4x 8b
18. ? + ? = 3’
-y =2
Hint: Solve first for g
19. zy = 6,

2+ ¢ + 3z + 3y = 28.

Hint: Multiply first by 2, add to
second, and solve for z + 4.

20. zy — 242 =0,
222 + 2 = 0.
21 2% + 4% = 1,
Yy =1z
1
2

22 z3 — yb 41 =0,
7 =0

Hint: Let z7 = z and y
find 2 and w; then find z and g
23 ohyd — B2k =1, N
7$% —_— y% = 1.\’\""

24, ot — 43 = LA
Y =,4:c;%':'
25. 22 — 2 <8,
s — g1

Hint: \Quzrde first by second.
26, Ak 7 — 28,
SNy =4

#\\Hint: Divide first by second.

38. The sum of two numbers is 16 an

numbers.

EQUATIONS INVOLVING QUADRATICS

27. z72—y2 =6,

2l =yl =

Hint: Let o' = 2, y* = w; find

z and w; then find z and y.

28. Tz =yl
2z + y1 = 6.
29. 620.1/ = 11
a7 + = 13.
30. Tt — gyt =2 A o
272 4y 2 — oyl = 12,80
31 c+y=6 O

%2 + 4day = 96. ,.,’}‘
Hint: Solve seconc'l'}or Y.
82. 2% — 2y =JON

3a? — 42 S\Y,
3a3. z 2 13,
\/5\\27 =1
34 AN\z + Vy =17,
NA=Vr 4+ Vy =1
w41
goEmd
3 4
752
Hint: Solve first for 5—2
36. T+ 4y —z =5,
2x24-y+z2=6,
2?4+ 2 — 2 =5,
37‘ x(y + z) = 87
y(x +2) = 18,
2z + y) = 20.

Hint: Lety = mz, z = nz.

N\

d their product is 63. Find the

39. The sum of two numbers is 200. The sum of their squares is 21,800

Find the numbers.

40. The sum of the reciprocals of two positive numbers is % » and the prod-
uct of the numbers is 96. Find the numbers.

41. The sum of the squares of
is 89. The number itself is
the number.

the two digits of a positive integral number
7 more than 6 times the sum of its digits. Find
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42. The perimeter of a rectangle is 82 inches. Its ares is 364 square inches.
Find its length and breadth.

43. A rectangular farm of 120 acres has 3 diagonal of 200 rods. (An acre
equals 160 square rods.) Find the sides.

44. Show that the formulas for the length I and width w of a rectangle in
terms of its area A and diagonal d are

= 0@ + 20t + @ — 2408, w = 1@ + 24)% - (@ - 20017
Q.
45. Show that the formulas for the length I and width w of a rectang}e in
terms of its perimeter p and area A are 2 AN
"\
L= 30p+ (@~ 1643, w =10y - 2 - 16437, C

X
3

46. A rectangular field contains 9 acres. If its length wefe' decreased by
20 rods and its width by 4 rods, its area would be less by% acres. Find the
length and width. www.dbraulibr

47. If the length of a diagonal of a rectangular fi Id of 30 acres is 100 rods,
how many rods of fence will be required to inclo '}e field?

48. It took a number of men as many daysl @o Pave a street as there were
men, but had there been five more workmes employed, the work would have
been done 4 days sooner. How many rpeil'were employed?

49. The sum of the squares of twpoédﬂsecutive integers is 1301. Find the
numbers. ™

50. A rectangular piece of tin, containing 400 square inches is made into an
open box, containing 384 cubié inches, by cutting out a 6-inch square from each
corner of the tin and thenzfp;hing up the sides. Find the dimensions of the

_ original piece of tin.

61. If the product offtwo numbers is increased by their sum, the result is 79.

If their product is‘dimi;xished by their sum, the result is 47. Find the numbers.

62. The hypoi;eqiuse of a right triangle is 100. If the shorter leg be increased
by 30 and{h’exlonger by 40, the hypotenuse would be 150. Find each of the
legs. )

2 8 .
53-' «Ayrope 56 feet long exactly surrounds an inclosure in the form of a right
tri%n&le' whose hypotenuse is 25 feet. Find the other sides of the inclosure.

Y B4, Psychologists assert that the rectangle most pleasing to the human eye
¥%hat in which the sum of the two dimensions is to the longer as the longer is
to the shorter. It the area of a page of this algebra remains unchanged, what
should its dimensions be?

. 86. Two polygons have together 16 sides and 41 diagonals. How many
Sides has ench?

66, An agroplane, flying 75 miles per hour and following a long straight
'mad; Passed an automobile going in the opposite direction. One hour later
1% overtook g second automobile. The automobiles passed each other when
the a€roplane was 100 miles away. If both automobiles traveled with the same
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speed, how far apart were they when the agroplane passed the second one and
what was their speed?

87. Two students attempt to solve a problem that reduces to a quadratic
equation. One in reducing has made a mistake only in the constant term of
the equation, and finds 8 and 2 for the roots. The other makes a mistake only
in the coefficient of the first degree term, and finds — 9 and — 1 for roots.
What was the quadratic equation?

58. A farmer raised broom corn and pressed 6120 pounds into bales. If
he had made each bale 20 pounds heavier, he would have had one bale lesé. \
How many bales did he press and what was the weight of each? A

59. After a mowing machine had made the circuit of a 10-acre reqt’aﬁgﬁlar
field 33 times, cutting a swath 5 feet wide each time, 21 acres of gyass were
still standing. Find the dimensions of the field. |\

60. A club of boys bought a motorboat for $192. Four poyé fafled to pay
their share as agreed, so each of the others was compelled t3'pa¥ $4 more than
he had promised. How many boys were in the club? )

61. A father divided $2000 between his two sons\and kept it for them at
simple interest until called for. At the end of 3,y'e§«rs', one son called for all
the money due him and received $1331. At the}sﬁ& of 4 years the other son
received $1152 as his share. How was the tmbney originally divided and
what rate of interest did the father pay? s ™

62. A few days after the outbreakv of* {;ﬁe war in 1914 a 25-pound bag of
sugar cost the retailer 774 cents morethan it did just before the outbreak. For
8165 a grocer received 1550 poundsless sugar after the outbreak than he would

have received before for the seme amount. What was the price before and
after the outbreak of the war?

63. The diagonal. og::\ii‘ec’tangular parallelopiped is 14 inches long. The
sum of the three d.upe ions is 22. The reciprocal of one dimension is one
half the sum of the Tesiprocals of the other two. What are the dimensions of
the solid? )

64. The di&goﬁals of the three faces of a rectangular parallelopiped which

meet in a y{;&tex of the solid are 5, 6, 7, respectively. What is the volume of
the soli% =

&



CHAPTER IX
INEQUALITIES

66. Definition. The expressions ‘“a is greater than b (a > b),
and “c is less than d”” (¢ < d), when q, b, ¢, d, are real numbetrs,
mean that a — bis a positive number and ¢ — d is a negative nlim-
ber. Such expressions are called inequalities. Two inequalities
@ > b, ¢ > d, which have the signs pointing in the same '(';]ii“ection,

Y
0 AN

www.dbraulibras

° D
Fie. 22 N7

are said to be alike in sense. If the &gns point in opposite direc-
tions, as a > b, ¢ < d, they are saidtto’be different in sense. The
expressiona = bisread “ais lessft;hdn or equal to b,” anda = bis
read “a is greater than or equal to b.”

If the numbers are plotted on a straight line as in Fig. 22, then
the statement @ > b n}@ar}s that a lies to the right of b.

67. Absolute and }o\nditional inequalities. We have seen that
there are two kinds’of equalities, identical and conditional equali-
ties. Correspohding to these there are two kinds of inequalities.
An inequality such as a2 4+ b? > — 1, which is valid for all real
values gha“and b, is called an absolute inequality; while an in-
equalitys Such as x — 4 > 0, which holds only when z is grea’ger
thai™4, is called a conditional inequality. In a conditional in-

\?(luality the letters cannot take all real values.

68. Elementary principles. The following elementary prh.lci-
ples, which follow at once from the definition of an inequality,

must be observed in dealing with inequalities.

L The sense of an inequality is not changed if bqth stdes are in~
creased or decreased by the same number. In par t7:cular, the sense
W not changed if we transpose a term, changing s sign.

Let a > b.
103
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Then a — b = n, where = is positive,
and a+k—-b—-k=n,
or @+ k) —-0O+k =n

Hence, a+k>b+ k.

Ezamples: 7 >3, hence 7+ 6 >3+ 6,0r 13 >0,
—5< —2hence =5+10< —24+10,0r5 < 8.

L. The sense of dn inequality is not changed if both sides ‘afe
multiplied or divided by the same positive number. O\
Ezamples: 7 > 3, hence7 -6 > 3 - 6, or 35 > 18. ;’\
—5< —2hence —5-6 < —2-6,0r—30 < -2

II. The sense of an inequality is reversed if both os{des are multi-
plied or divided by the same negative number. )

Examples: 7 > 3, hence 7 - (— 6) <3:(— 6),ar'\"N42 < — 18.

—5 < —2hence ~ 5. (— 10) > — 2(5710), or 50 > 20.
8 < 16, hence :8—2 > __1_62’ or —4 > — 8.

The proofs of IT and IIT are very: similar to the proof of L.

IV. The sense of an inequaljt?; es reversed if each side is replaced
by its reciprocal. N
Ezamples: ‘(> 3, hence

s J

<
Nt 1
\\5< —2,hence—5

:‘i\ 4 . EXERCISES
1. Whick of the above elementa

o Ty principles justifies the statement that a
term apﬁ}aﬁhg on both sides of an i

nequality may be cancelled by subtracting

the terg om both sides?
—— ey — X
m76\-5-4-3-—2-—10123i56
\ b Fic. 23
2.? How may terms be transposed from one side of an inequality to the
other

3. What part of the seale in Fig. 23 is included in the statement
—1=2z<5?
4. What part of the scale in Fig. 23 is included

Nore. The symbol |z |
that is, the value without
“ absolute value of z.”

in the statement | z | < 47

is usually used to denote the numerical value of %,
regard to sign. The expression | z | is often read
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6. If a and b are not equal, show that a2 + b2 > 2ab.
Solution: (a — b)? > 0, since the square of any real number is positive.

That is, a® — 2ab + b > 0.
By Principle I, a’® — 2ab + b + 2ab > 0 4 2ab,
or a? + b2 > 2ab.
6. Show that 2 ul > Vab, if ¢ and b are positive and unequal.

2

This inequality states that the arithmetic mean of two positive number§™\

is greater than the geometric mean. A
In exercises 7 to 12 the letters represent unequal positive numbers. \’\\

. Show that & + > 2. >
N
8. The harmomc mean of two numbers, a and b, is a—&%b—- “»Show that the
A
harmonic mean of two numbers is always less than the Béometric mean.

9. Given a? + b2 = 1, ¢ + @ = 1. Show that gb\Jded < l.www.dbraulibrai

Hint: (@ — b)? = a® + b — 2ab. X7, N
p .\ e
a _¢ a_a+tc _c NN

10. IfT; <(—i;showthatl—) <b+d<d

Hint: + < = + 5’ Whence ate d <“£
b a? b

1 5

1. Show that < +b< prpy A 1£b<a

12. Show that a + 5 > 2)( @ is positive and # 1.

13. Prove [a | + | b\é Ta+b]. (See exercise 4.)

Hint: Consider t@b, cases, first when a and b have the same sign, second
when they have fi{Her"ent signs.

14, Prove']@[.’—i- [b]=|a—b].

16. Proye\fla | — (bl = [a— b

69.. (%ndmonal inequalities. By transposing terms every in-
equahty may be reduced to an inequality of the form P > 0, or

< 0. If one or both sides involves a variable, say z, it can be
\put in one of the two forms f(z) > 0, or f(z) < 0. In this con-
hection the most important problem is to find the range of values
of the variable for which the inequality bolds. In the case of linear
inequalities the solution is easy. Thus, to find the values of z for
which the inequality

3z+19>12 -2z

holds, all the terms can be transposed to the left-hand side, and

there results
4z +7 > 0.
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Hence the inequality in question holds only for z > —

Graphically,

for those values of

Y

INEQUALITIES
7
e
3r4+19>12 — z

z for which the graph of the function

3t +19 - 12+ =4z + 7

/

o A
lies above the X-axis (Fig. 24).

/

\ 110y

\ LD

\ df 3’«;

L
L

I »X
.—!¢'"_
o] X ‘:~ A
T 17T 8% 1| | |
Fie. 24 < Fia. 25

The graph is of\g}e;i; servic
whith one funcfion of z is
Thus, to fing the range of

xt\"’
2\

we txﬁs})ose all

| A The graph of this funct;

X-axis at 1 and

2 — 5z 4 4is positive; whi

L

e in determining the values of z for
greater or less than another function.
values of 2 for which

2x“’—3x+8>x2+2x+4,

erms to one side and have

o — 5z +4 >0,

on is shown in Fig. 25. It crosses !-,he
for =z > 4, or z < 1, the function
leford >z > 1, it isnegative; hence,

4, and

2 —3c+ 8>+ 2 44

forx>4,andx<

ford >z > 1.

1, while

22" —32+8 <o+ 2 + 4



CONDITIONAL INEQUALITIES 107

EXERCISES
For what values of z do the following inequalities hold?
1, 2z —-5>17. 4‘2x_5>2x_5.
222 —5>—1. 2
8. 2x — 5 > 5z — 2. 6. 3z+4 <5z 4+ 6.
6. For what values of z is s+l negative?
z+2 N
T.a2—z—2>0. 8. 222 + z > 3. 9. 13z — 622 > 5,
(>2 1 : 1 Oy
10. 322 — Bz ! = 2 11.$>1+2x. 12.]x[>x::§\ A
<2 N
' 4 “‘
13. For what values of z is \\ ¢
v

@ -3+ 1) < @ - 2@+ 12, &
14, For what values of % are the roots of t%\quadratnwveqﬂatmmhbrar
424122+ k=0 INY
real and unequal? Imaginary? \V

sy'

Hint: See Art. 55. iw»
15. Same as exercise 14 but for the qxradratlc equation
zz + ks:c;}*él = 0.

For what values of z do the foﬂozwmg inequalities hold?

2z 3 ’\
16.45>O. &}\
17’x1<x2J‘&\
111 2 2
xll‘w
18.114“{1.
1 1L
! z 2 2
{\Dzm.
S N 2 2 z
1
<,20111>””ll
z 1 =z
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CHAPTER X

RATIO, PROPORTION, AND VARIATION

N
70. Ratio. The ratio of a number a to a number b is the q\uojuent
¢S
% obtained by dividing a by b. The ratio a to b is also vyr\ltft‘:‘,n a:b.
It is clear from the above definition that any ra’gid}ésﬁa fraction

. AN ‘2 3 q°
and any fraction may be regarded as a ratlo.m{ﬂhus, 3z and 3

are ratios. \

71. Ratjos involved in measurement’ ;.\It is good usage and is
often convenient to speak of the ratig’;fx\two quantities if they I:}ave
a common unit of measure. Thusthe ratio of 6 feet to 2 feet is &.

To measure a quantity is to fiidits ratio to a given unit of meas-
ure. Thus, when we say a bris 3 yards long, we mean that the
ratio of the length of this.bﬁ'r to that of the standard yard is 3.

72. Proportion. Alproportion is a statement of the equality of
two ratios. Thlﬁ’
A

\ e_c
\J b d
A\
is a proportion and is often written
'\\:\ a:b=c:d,

ItisTead “ais to b as ¢ is to d.”

N vThe four numbers q, b, ¢, and d are said to be in proportion,
“a and d being called the extremes and b and ¢ the means of the

proportion.
EXERCISES
Find the value of z in the following proportions:
z_ 7 3 _ =
L5=15 3= 16
5 _ 7 . 3 12
2. z = T(—) 5. 3 = _CC—.
z:12=2:8 6.4:7=23:14
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T If % = 5, then z is said to be a fourth proportional to a, b, and ¢,
Find a fourth proportional to the following sets of numbers:

(a) 5,10, — 6.
o) 4,3, —12.
(C) 41 - 67 - 5

8. If g = g, then # is said to be a mean proportional between a and d..\

Find the mean proportional between the following sets of numbers:

(a) 4and 9. P \:\
(b) 4+ 3 and 4+ 48. O
(¢) — 3 and — 48. ENY

8. 1t % = %, 2 s said to be a third proportional to a and 82 ¥ind a third
proportional to the following pairs of numbers: Q
www.dbraulibra

(a) 2, 3. ) \:
® 2, -8 o\‘;.\
(&) 7, 11.

@ —7, — 118D

Given the proportion, % = g; prove t;hé following:

10. ad = be; produet of meanssequals product of extremes.

11,

; said to be obtla,i{ed by inversion.

12.

a8 /Alo
LIS ol

\" .
; said to be%btained by alternation.

13. @ = (6‘—;@, said to be obtained by division.
’\ e

at b +d
a:'\ ¢ —d

*

N PROBLEMS INVOLVING SIMILAR FIGURES

}} 16. The sides of a triangle are 3, 4, and 5. In a similar
langle the shortest side is 5. What are the other sides?
(Fig. 26.)
Similar figures are figures of the same shape. (Figs. 26,27.)
In two similar figures any two of the sides of one are propor-
tional to the two corresponding sides of the second. The
8reas of similar figures have the same ratio as the squares of
corresponding sides.
_ 16. The sides of a triangle are 9, 10, and 11. If the shortest Fia. 26
Side is lengthened one inch, what are the increases in the
length of the other two sides in order to make the new triangle similar to the old?

14, ; obtained by composition and division.

N
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17. In Fig. 27 the sides of the larger figure are 1, 2, 3, 4, 5. The longest
side of the smaller figure is 3. What are the lengths of the other sides?

18. The area of a triangle whose base is 12 inches is
60 square inches. If the area of a second triangle similar
to the first is 135 square inches what is the base of the
second triangle?

19. A post 4 feet high, 20 feet from a street light, casts
a shadow 7 feet long. What is the height of the light on .
the lamp post?

20. If in a map the distance between two pointg}&O
miles apart is 4 inches, what is the distance between, two
cities which are 5 inches apart on the map? g

73. Variation. In Chapter III we have seen thé:i: if yis a
function of z, written ~\
y=1 (2}),

then in general y changes when z change;s;\\We may say that
y varies when z varies, but the word “varies” has come to have a
more restricted meaning when used in'this connection. Each of
the statements o

‘4 varies as x,”;:': "

“y varies direetly as z,”

“y is proportional to z,”

“yis di}e@ly proportional to z,”
means that y is equai\ﬁQ the product of x by a constant. That is,

' K y = kzx.

The cons’ca,nfj ki called the constant of variation.
The expngsisfion “y varies as 2 is sometimes written

Fra. 27

'\'\\” Yy oz,
Thg area of a circle varies as the square of its radius. That is,
) A=k
}f A represents the area and r the radius. With our restricted

meaning 01'° the word “varies,” it is not correct to say that the
area of a circle varies as the radius, for, in the equality

A=Fk-r,
k is not a constant for different values of 7.

If a train moves with a uniform speed, the distance s traversed
varies as the time £. That is,

s = ki
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74. Inverse variation. Each of the statements

“y varies inversely as z,”
13 o M ”
y 18 inversely proportional to z,

means that y is equal to the product of the reciprocal of x and a
constant. That is,

_k
y x N\
The volume of air in the cylinder of a bicycle pump varies,in-
versely as the pressure on the piston. That is, N\
V= I—c’ N
D s,
\ N

if ¥ represents volume and p pressure.

75. Joint variation. The statement “z y{{}% joint§ 35 brar
y” means that z is equal to the produc‘rq’)f. z, ¥, and a constant.
That is, NS

z = kxy\)
The distance which a train, moy:trig"with a uniform speed, travels
varies jointly as the speed and the time, or

: o d = kt,
where d is the distalgee;\ c¢overed, v the speed, and ¢ the time.

In this case k = 1,’~i§v"énd d are measured with the same unit of
“length. A\

76. Combiné}l:’:variation. The statement “z varies directly as
z and inverSely as y”’ means that z varies jointly as z and the
reciprotabef y. That is,

,.s\ kx'

s.’; g = —

A y

“XT varies directly as z, directly as the square of ¥, inversely as w
and inversely as the cube of v, we have .
2

The attraction F of any two masses m; and ms for each other
varies as the product of the masses and inversely as the square
of the distance r between the two bodies. That is,

kmyme
F ==
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77. Comments on problems of variation. Problems of var-
ation frequently arise in experimental work.

Illusiration 1. The time of vibration, ¢, of a simple pendulum varies as
the square root of its length, I. Tt is found by experiment that a pendulum
39.1 inches long makes one vibration per second. Find the time of vibration
of a pendulum of length 13 feet.

Solution. The law of variation is ¢ = kV/1. Q
1 N
=1,1=39.1 = . {
To find %, put ¢ ,1=39.1. Then k Vol ' \, \”>
Hence, the law may be written g« M

[ N
t = m' "..

To find ¢ when I = 13 feet = 156 inches, we have

t = \’% = 2~ secondg ™
X L&

Tlustration 2. The safe load of a horizontalbeam supported at both ends
varies jointly as the breadth, b, and squar'e’of' the depth, d, and inversely as
the length, I. If a 2 X 6 white pine joist sdfely holds up 800 pounds, what is the
safe load of 2 2 X 8 joist of same length?

Solution. The law of variation‘gnéy'be written

{N; _ kba?
RN R .
s 3 .62 .
From the given da,tqk\lc"is determined by the relation 800 = g_._%__
N\ _ 800
Thus, ,'; \. k= R R

The requifel¥safe load, 7, = 2-8% _ & - 800 = 14223 Ibs.

=\ EXERCISES AND PROBLEMS

ol Wnte each of the statements in exercises 1 to 9 in the form of an equation,

of variation. Determine % when sufficient data are given.

1. The volume, V, of a cube varies as the cube of its edge, e.

2. The area, A, of a circle varies as the square of its radius, r.

3. The volume, V, of a sphere varies as the cube of itg radius, 7.

4. The volume,
the pressure, p.

5. The attraction, A4, of two particles of m:
square of the distance, d, between them.

6. The height, h, of a
28 the temperature, T.

V, of a gas at constant temperature varies inversely as
atter varies inversely as the

column of mercury in a thermometer varies directly
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7. The weight, w, of a body above the surface of the earth is inversely
proportional to the square of its distance, s, from the center of the earth.
If an experiment gives w = 150 pounds when s = 4000 miles, find w when
s = 8000 miles.

8. z is directly proportional to z and inversely proportional to y. Experi-
ment shows z = 6 when £ = 9 and y = 3.

9. z varies directly as the product of  and y and inversely as w. Experi-
ment gives 2 = 10 when z = 6, y = 5, and w = 3. )

10. Divide 200 into three parts proportional to 3, 7, 10. N
11. An estate of $100,000.00 is divided into four parts proportipg‘il\to
1,2, 4, 8. What are the parts? e\

Problems Involving the Strength of Materials{ N

12. Write in the form of an equation the law: The safe Igad w of a hori-
zontal beam supported at both ends varies jointly as thé‘b\eadth b and the
square of the depth d and inversely as the length between supports.dbraulibra

13. A beam 15 feet long, 3 inches wide, and 6 ipcbeé deep when supported
at both ends can bear safely a maximum load, p(ISOO pounds. What is the
safe maximum load for a beam of the same ‘material 10 feet long, 2 inches
wide and 4 inches deep? (See problem 12.8./

14. What is the safe load for the sgé(md beam mentioned in problem 13
if it is turned so that the width is 4.jiiehes and depth 2 inches?

15. Write in the form of an eqiation the law: The crushing load, L, of a
solid square oak pillar variesdirectly as the fourth power of its thickness, ¢,
and inversely as the squareof, its length, 1.

16. If a four-inch h{piﬂar 8 feet high is crushed by a weight of 100
tons, what weight will ctush a pillar half as high and 6 inches thick? (See
problem 15.) 79N

17. What Weiék}t will crush a four-inch oak pillar 4 feet high?

18. The.d;e'ﬁ\ection D of a rectangular beam of a fixed length varies i'n-
versely as\bhé product of the breadth b and the cube of the depth d. Write
thig s};q{be ent in the form of an equation.

A9:AIn the formula

g \ Ny 3 kbd
\ ) | 8§ = -—l—y
s denotes the strength of a rectangular beam, b, d, and /, the breadth, depth,
and length, respectively, of the beam, and & is a constant. State the formula,
In words, using the terms of variation.

Problems Involving Motion

20. The number of feet a body falls varies directly as the square of the
humber of seconds occupied in falling. If the body falls 16.1 feet the first
second, how many feet will it fall in 6 seconds?

21. How far will  body fall during the sixth second?
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22. The velocity of a falling body at any time varies directly as the number
of seconds occupied in falling. What is the velocity at the end of 6 seconds
if the velocity at the end of the first second is 32.2 feet per second?

23. An object dropped from a balloon strikes the ground in 7 seconds.
At what velocity does the object strike the ground and what is the height of
the balloon when the object is dropped?

24. A wrench is dropped from an automobile at a height of 3 feet while
the automobile is traveling at the rate of 70 miles an hour. How far doess
the automobile move while the wrench is falling?

25. The time for one vibration of a pendulum at a given place v&xi};&as
the square root of the length of the pendulum. In Chicago a gendulum
4 feet long requires 1.1 seconds for a vibration. What is the tin}e"of vibra-
tion of a pendulum 1 foot long? N

26. What is the length of a pendulum which vibra,te&év’ery second at
Chicago? ‘)

27. A weight is suspended by a wire 94 feet longs\\What is the time of
one vibration at Chicago? O\

28. A pendulum supposed to vibrate every ss¢eond registers 90,000 vibra-
tions in 24 hours. How much must the pendu]ufn be lengthened?

Problems Involvf:}é Pressure
29, The volume of a gas inclosed in a'vessel varies inversely as the pressure

upon it. Twenty-four cubic inchésof air under a pressure of 100 pounds
will have what volume when the pressure is decreased to 50 pounds?

80. If a toy balloon contajﬁé 150 cubic inches of gas when under a pressure
of 15 pounds per squa{:n'inch, to what size will it shrink if subjected to a
pressure of 45 pounds p \square inch? (See problem 29.)

31. The pressure{obwind on a sail varies jointly as the area of the sall
and the square of the wind’s velocity. When the velocity is 15 miles per hour,
the pressure 'o{a’square foot is 1 pound. What is the velocity of the wind
when the Pressilre 1s 10 pounds per square foot?

32. The'pressure of gas in a tank varies jointly as its density and its abso-
lute temperature. When the density is 1 and the temperature 300°, if the

_p're;ssuje is 15 pounds per square inch, what is the pressure when the density
»8.2and the temperature 290°7

\ )




CHAPTER XI

PROGRESSIONS

78. Arithmetic progressions. An arithmetic progression 5™
sequence of numbers each of which differs from the next b pre-
ceding one by a fixed number called the common dﬁgrence

Thus, \
2, 4, 6, 8,
is an arithmetic progression with the common “dlfference 2. In
the arithmetic progression v www.dbraulibrar
10, 8, 6, 4,2, - "::\\':
~N

the common difference is — 2.
The numbers of the sequence ager called the terms of the pro-
gression. AN

\ N
LR Y
\ .

79. Elements of an arithniétic progression. Let a represent
the first term, d the cogmon difference, 7 the number of terms
considered, 1 the nth, exlast term, and s the sum of the sequence.
The five numbers &‘k\d n, 1, and s are called the elements of the

arithmetic progression.

80. Rela ohg among the elements. Since a is the first term, we
have, by, d, hition of an arithmetic progression,

O a + d = second term,
RN a + 2d = third term,
@ a + 3d = fourth term,

a+ (n— l)d = nth term.
That is, 1=a+ (n- 1d. 1)
The sum of an arithmetic progression may be written in each
of the following forms:
S—at(@td+@t+2d)+ - +0-2)+0C-D+],

s=l+(0-d+(@-2h)+ - +@+2)+@+td+a
115
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By addition

=@+ +@+D+@+D+ - +@+D+(@a+1])+(a+)
= nla + I).

Therefore,

s=§m+o. @

Whenever any three of the five elements are given, equatiorﬁ
(1) and (2) make it possible to find the remaining two ele{n\ef(cs.

81. Arithmetic means. The first and last terms gfs.a?m arith-
metic progression are called the extremes, while £he, remaining
terms are called the arithmetic means. To insert &given number
of arithmetic means between two numbers it 3s only necessary
to determine d by the use of equation (1) and* to write down the
terms by the repeated addition of d. \x\ .

EXERCISBSY

Continue each of the following seq}lei)’,ce; to three additional terms.

L2, -1, —-4-7,....

Solution: Each term in this ’se'(;)’lénce may be obtained by adding — 3 to
the preceding term. Hence,

the Sequence is an arithmetic progression where
d = - 3, and three additi\nal terms are — 10, — 13, — 16,

21,5913, .-, 2715
8. — 2,5 12,49\, "3’ 12'2' 137 "

Find ! and s{or} the following sequences in exercises 5 to 9:
5. 2, 1g\2§); *** t0 10 terms,

Solutz: 2 l=a+4 (n - 1)d.
Her{,g e=2d=9,n =10
l=2+9.9=g3
¢\"
J s=5@+1D
= 5(2 + 83) = 425

6.1, 3,5, 7, - t011 terms, 8. 51, — 3, — 7, to 20 terms.
7. 2, 6, 10, 14, - .. t0 12 terms.

9.32 0 - g to 8 terms.
63; find  and L.

=172; find d ang s,
12, Given d = —2,n=10,1= - 17; find ¢ and s,

13. Given n = 1,1=20,5 = 0; find ¢ and d.

10. Givena=3,d=6,s=3
11. Given q = —6,n= 12,1
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14. Givena=7,n =7, =17; find d and I.

16. Find the sum of the odd numbers less than 100.

16. Find the sum of the odd numbers less than z, where z is an even number.
17. Insert six arithmetic means between 3 and 8.

Solution: We have to find d, when a =3, 1 =8, and n = 6 + 2 = 8,

Since l=a+ (n — 1),
we have 8=3+7dord =" ~
Hence, the six arithmetic means between 3 and 8 are p \:\
2 31 36 41 46 51 O
TN T T T T

18. Insert three arithmetic means between 4 and 16,
19. Insert five arithmetic means between 4 and 18. )
20. Find the arithmetie mean between 8} and 172 www.dbraulibrar
21. Insert two arithmetic means between z andg /

22. Insert two arithmetic means between. e ahd 72

A

82. Geometric progressions. A geometnc progression is a se-
quence of numbers in which the Same quotient is obtained by
dividing any term by the precedmg term. This quotient is called
the common ratio. Thus, 3"

\37 6,12, 24, - -+

is a geometric prog@sién with a common ratio 2.

83. Elements, ‘of a geometric progression. The elements are
the same as’those for an arithmetic progression with one excep-
tion. Inste\ad of the common difference of an arithmetic pro-
gTeSSIORKWe have here a common ratio represented by r.

84;.Relat10ns among the elements. If a represents the first
tEr}n then
\ ar

second term,

fi

ar? = third term,
ar® = fourth term,
ar™! = nth term.
That is, l = ar/1, Y]

By definition,
=ag+ar+a?+a’+ - +a @
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Then, sr=ar+a?+a+ - + ar*t 4 arn, 8)
Subtracting members of (2) from members of (3), we have
sr— s =ar— a.
ar" —a _ a(l —-m.

Hence, s= T =eg—, 4) .
Since l = ar, (4) may be written in the form ~
rl—a \
= . (5
r—1 .\”(\)

. ODN
Here, as in an arithmetic progression, whenever any, three of
the five elements are given, relations (1) and (5) ma}ge ‘Tt possible ‘
to find the other two. \\

85. Geometric means. The first and last teriis of a geomet-
ric progression are called the extremes,x.Qx};file the rema'min.g
terms are called the geometric means., {I'¢ insert n geometric
means between two given numbers i Yo’ find a geometric pro-
gression of n + 2 terms having the two given numbers for extremes.

EXERGISES

1. Write five terms of the gec;r}letric progression whose first term is

2 .. 78
3 and whose common ratio N

¢ \J
2. The first two teras, of a geometric progression are 1 and

1 .
=. ite
5 3 Wr
down the next three £érms.

3. Find the :eléjvénth term of the sequence 1, %, ‘%, (RN
Soluti%\;' a=1 n=11, r=
O\ 1\10 1
o l=amt=1. (—) = __—_.

A\ 2
NS
”\; “4. Find the twelfth term of 16, 8,4, ...,
\ 6. Giveng = 2,r = — 3,n = 10; find ! and s,

6. Givena=%yr=2,n=8; find ! and s.

7. Given s = 13, ¢ = 1, n=3; find » and I and check your result by
writing out the progression.

8. The third term of the geometric progression is 3, and the sixth term
is 81. What is the tenth term?

9. Find the sum of 3,6,12, -.., 192,
10. Find I and s when g = Tir=7n=1
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11. Givenr =7,n =7,1 = 7, find a and s.

12. The fifth term of a geometric progression is 5, the common ratio is 3;
find the tenth term.

13. The fourth term of a geometric progression is 0.9, the seventh is
0.0243. Tind the first two terms.

14. Find the 13th term and the sum to thirteen terms of the sequence,
,v3 3, -

15. Find the last term and the sum to seven terms of the sequence, Q"
2z — 9y), (72 + 3y), (122 — y), - A\
16. Insert two geometric means between 2 and 1024. P \
Solution: We have to find r, when ¢ = 2,1 = 1024, and = =’4..':.‘ by
Since l=ar, , \ ‘
\\
we have 1024 = 2r% or 3 = 512, r = 8. N

" www.dbraulibrar
Hence, the two geometric means between 2 amkl()24 are 16 and 128,

17. Insert one geometric mean between 5 and §Z5
18. Insert three geometric means betweend8k,and 1. Give two solutions.

19. The geometric mean between two gprﬁbe:rs is 33. One of the numbers
is 9. What is the other? JON 8
20. Insert three geometric means Between 3a? and -

na

86. Number of terms{infinite. Consider the geometric pro-
3

gression o
‘\\ %) Z{":%”Tl?:
It may at first, fRought appear that the sum of the first n terms ]
of this progreission could be made to exceed any finite number
Previous%';as’signed by making n large enough. That this is not
& z

N 1 T FolT
AN 3 P, B RRA

\‘:"' Fie. 28

the case and that the sum can never exceed unity, will be seen
from the following illustration. Conceive a particle moving in a |
straight line towards a point one unit distant in such a way as to a,
deseribe 1 the distance in the first second, # the remaining distance '
in the second second, % the remaining distance in the third second,
and so on indefinitely. This is represented in Fig. 28.

The distance A B represents one unit of distance. In the ﬁrgt ,‘
second the particle moves from A to P1. In the second second it ;
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moves from P; to Py, and so on. The total distance traversed by
the particle in n seconds is given by the sum

t+++ 3+ - ton terms,
which sum cannot exceed nor equal 1, no matter how many terms
we take, but can be made to differ from 1 by as small a positive
number as we please by making the number of terms large enough.

In this illustration, 1 is said to be the limiting * value of the sufi
of the first n terms of the series. If s, represents the sum of, <ohe

first n terms of the series, we write A\
lim by
g= m oo 1, ~\

which reads, “the limit of S, as m increases beyogd\bbund is1.7%
The limit s is called the sum of the geometfi progression with
infinitely many terms. N
For any geometric progression in Whic( ﬁ}e'ratio is less than 1,
the above argument can be repeated,Nand it can be shown that

there is a limiting value to the sum of.the first # terms of such a

series. In Art. 84, we have shown'that the sum of the geometric
progression ™

a+ar+@ 4 ... 4 gt

is given by s,‘=‘1{(“1%;77:n)—_—1“r_1_‘""_.
4 - - -7T

We may then write'™\"

im N @ g
Lt 8":‘_.\n£’n°o 1—7 nl;moo 1%; (See Art. 182.)

. 2,
It will be-ptoved in the chapter on Limits (Art. 184) that

N\ . .
& im a7
N n—w T =7 = 0 When |r]| < 1.
.~\'~
gy} :
en = lim _ a
\H ce, s= o Sy = T

87. Series. A series is an expression which consists of the sum
of a sequence .of terms. Thus, the indicated sum of the terms of
& progression s often called a series,

A finjte series is one which has a limited number of terms.

* For definition of * limit,” see Art. 181.

1 The symbol * ” s .
“n bemm:;“i‘ nﬁoni t:? ® " stands for “‘n increases beyond bound,” or its equivalent

-
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An infinite series is one in which the number of terms is infinite;
that is, the number of terms has no bound.

88. Repeating decimals. Repeating decimals furnish good illus-
trations of infinite series which are at the same time the sum of
the terms of a geometric progression with infinitely many terms.
For example, 0.33333 - - - may be written as the series

0.3 + 0.03 + 0.003 + 0.0003 + ---,

where ¢ = 0.3 and r = 0.1. The limit of the sum of n tp,r\ih%.})f
this series as the number 7 increases indefinitely is 3, Mgain,

0.9828282 - - - may be written N

0.9 + 0.082 + 0.00082 + -+, LY
where the terms after the first form a geome‘gn'c ’prq,gmssmai@hbra]
which ¢ = 0.082 and r = 0.01. NV

The expression “limit of the sum Qf.f;l Yerms of the infinite
series as n increases beyond bound” is\gften abbreviated by say-
ing merely “sum of the infinite seriés:”

EXERCISES
Find the sum of the following: pr.o’gressions:
1 1} 1 ~\ 4,75, 15,3, ---.
. y3! 9; .o, \'\int 5. 49’_21’9,”.-
R N 6.8 V24,0
39 N

3. 6) 4) 2%: 'Z"'.\ 4

*

Find the hqn’hﬁg value of the following repeating decimals:

7. 0.909090 - - -. 9. 0.70707 - - -.

8. 07777 - - - 10. 8.3707 -« -.

A Hint: Write the number as 8.3 + 0.070707 - - -,
\”\‘11". 0.741414 - - ., 12, 123.123123 - - -.

89. Harmonic progressions. Three or more numbers are sgid
to form a harmonic progression if their reciprocals form an arith-
letic progression. The term ‘harmonic” as he%re used comes
from a property of musical sounds. If a set of strings of uniform
tension whoge lengths are proportional to 1,4, % L L % be
sounded together, the effect is harmonious to the ear. The se-
Quence

1’%’%7%7 %y
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is & harmonic progression since the reciprocals form the arithmetic

rogression
prog 1,2,3,4,5, .

90. Harmonic means. To find n» harmonic means between
two numbers, find n arithmetic means between the reciprocals
of these numbers. The reciprocals of the arithmetic means are

the harmonic means. \
EXERCISES o
2
1. Show that the sequence, %, },—,), —13—1, %, %, is a harmonic }?g?ggéssion.
2. Continue the harmonic progression, 1, g; — 5, -+, for 'ih.ree more terms.

3. Show that 2, 3, 6 are in harmonic progressiony and’ continue the series
for two terms in each direction. O

4, Insert two harmonic means between —13- ane(%\>
X

NN

5. Insert two harmonic means betweer} 9.4nd %

6. Insert four harmonic means kge.fﬁeen 1—12— and %
7. What is the harmonic mean between a and b?

&

o\

3

¢  PROBLEMS

1. A ball rolls¢down an incline 7.47 feet the first second, and in each

succeeding secofid,14.94 feet more than in the preceding second. How far
will it roll in¢10,Seconds?

2. How &any ancestors has a person in the ten preceding generations

counthsg WHis two parents, four grandparents, eight great grandparents and
so on, (assuming no duplicates)?

8. What distance will an elastic ball traverse before coming to rest if it

\ Jbe dropped from a height of 60 feet and if after each fall it rebounds one sixth

of the height from which it falls?

4. If a falling body descends 164 feet the first second, 3 times this dis

tance the next, 5 times the next, and so on, how far will it fall the 30th second,
and how far altogether in 80 seconds?

b. Assume that a baseball will fall 16 feet the first second, 48 the next,
80 the next, and 5o on. A baseball was dropped from the top of Washingto?

Monument, 550 feet high, and caught by an American League cateher
About how fast was the ball falling when caught?

8. A swinging pendulum is brought gradually to rest by friction of the

n air. If the length of the first swing of the pendulum bob is 30 centimete
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and the length of each succeeding swing 1s less than the preceding one,

what is the distance passed over in the fifth swmg?

7. What is the total distance passed over by the pendulum bob described
in problem 6 in 5 swings?

8. A person contributes one cent and sends letters to four friends asking
each to contribute one cent to a certain charity and to write a similar letter
to four friends, each of whom is to write four letters, — and so on until nine”
sets of letters have been written. If all respond, how much money will the
charity receive? ne N\

9. Twenty-five stones are placed in a straight line on the ground~ at in-
tervals of 4 feet. A basket is placed 10 feet from the end of the row} X'runner
starts from the basket and picks up the stones and carries them, one at a
time, to the basket. How far does he run altogether? ¢ ()

10. An employer hires a clerk for five years at a begim?ihg salary of $500

per year with either a raise of $100 each year after thefirst, orvaraisd bf-$2hibrar

every six months after the first half year. Which\%‘the better proposition
for the clerk? \ v/

11, What annual increase in salary is equa:l bver a period of six years to a
monthly increase of $5.

12. What is the sum of the first n Qd.d numbers‘f

13. What is the sum of the first, n‘eVen numbers?

14. A rubber ball is dropped %fém a height of 120 inches. On each re-
bound the ball rises to = Qf‘*he height from which it last fell. Find the dis-

tance traveled by the. bzhk\before coming to rest.

15. Find the hml.tmg value of the sum of the series
A 1 1
-+ where z > 0.
Tt aaetare T T
16. If% G' and H stand respectively for the arithmetic, geometric, and
haerm”c means between two numbers @ and b, show that G2 = AH.

A7 The fourth term of a geometric progression is 81, the seventh is 9.
'Wllat is the tenth term?

18. What is the equation whose roots are the arithmetic and the har-
monic means between the roots of 2 — 16z + 48 = 0?

19 If —— b 21b P L form an arithmetic progression, show that a, b,

and ¢ form a geometrlc progressmn.
20. Find the common fraction equal to .4919191 ---.
21. Find the improper fraction equal to 4.037037037 - - -

22. Given unequal positive numbers a and b, show that their arithmetic
ean is greater than their positive geometric mean.
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23. A pail containing 6 quarts of water was passed in succession to 11

football players. Each drank é of the water that was in the pail when he

received it. How much water was left in the pail after all had drunk?
24, The sides of a right triangle are in arithmetic progression. Show
that the triangle is similar to the triangle whose sides are 3, 4, 5.

25. The sum of an arithmetic progression is 36, the first term, 15, and

the common difference, — 8. Find two values of n which satisfy these ¢omw
ditions.

26. The mth term of an arithmetic progression is M. The nth “Q};hs N.
What is the first term and the common difference? \”}

%

| ¢ 2\
b ‘Q\
L)
; Ve D
NS/
A,
A
¥ \ W
,§../
«)




CHAPTER XII

MATHEMATICAL INDUCTION AND THE BINOMIAL
THEOREM

91. Introduction. Many important theorems in algebra can\
be proved by a method called mathematical induction.{ {he
principle on which this method of proof depends may be illustrated
as follows. Imagine a line of men at a ticket Windqw}§ééking to
purchase tickets for a football game. Suppose we\could show
that: (1) The first man in line obtains a ticket; ..(X)\lf anyone gets
a ticket so does the next in line. We conclude from thesevripalibra
tions that everyone in the line obtains a t, regardless of the
number of persons in the line. We beg{g‘t e explanation of this
method by applying it to a simple example

Let it be required to show thaty 2 — y is exactly divisible by
z — y for all positive integral « VaIues of n. If n =1, we have
z — y, which is divisible by % — y with the quotient 1. This
corresponds to condition (1) Let r be any value of » for which
the proposition is true. i‘Then

-y = (3 - 9@ )
where @ is a polynomlal (Art 24) in z and y. Since
AR T\y’“ = — gy =z —xy a2y — Yy
<§; =df—y0+ww—w
\/ =2 - yQ+ & -y by (1)

s

(z — 9)=Q + y7),
.»\thé propOSItlon is true for r + 1 whenever it is true for r. This
\\ gorresponds to condition (2).

Since the proposition holds for n =1, it follows from the
second part of the argument that it holds for the next integer, that
is, forn = 2. Its validity for n = 3, 4, and so on follows for the
Same reasons.

It is no proof simply to show that a theorem is true in a number
of cases. For example, the above theorem is not proved by show-
ing that it is true for n = 1,n=2n=3n-=4 and so on fora
definite number of cases. The second part of the proof is necessary.

125

*
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A celebrated example illustrating this point is the expression
n? — n + 41. From the table we see that n? — n + 41 is a prime

n = 1123 (4(5|6|7]|8 9 10 | 11 | 12

W —n+ 41|41 43 |47 |53 |61 (71|83 97| 113 131 | 151 173

number for all integral values of # up to 12. The table eould
be continued up to #n = 40 and the lower row would still contgin
nothing but prime numbers. However we have no proof, that
7 — n + 41 is prime for all integral values of n. To praVe this
it is necessary to take the second step in the proof by m'gthemab
ical induction, i.e., to prove that if 72 — r + 41 is 'jﬁrime, then
(r +1)* ~ (r + 1) + 41isprime. But thisis impessible. Infact,
when n = 41, we have ’

= 41 = 1681 = 415"
W\

a number which is not prime. \S;

Again, it is no proof simply to showzbhat if a statement is true
for n = r it is true for n = + 1‘;.’:For example, assuming that
the sum of the first » even numbers is an odd number it follows
that the sum of the first » + 1 &Ven numbers is odd. Though the
second part of the proof of {his statement by mathematical induc-

tion can be correctly prpsex}ted, we know the statement to be false.
The first part of the Preof is lacking.
We emphasize the, two parts as follows:

Part 1. To'sh'c'n’w; by mere verification that the proposition in
question is tpuefor some particular case, usually for n = 1.
~Part IKTO show that if it is true for n = 7, it is then true for
n = r 40

If these two steps are com

pleted it follows that the proposition
js\frue for every positive in

b tegral value of n, equal to or greater
an the one for which the verification was made in Part I. The

verification for values of n beyond n = 1 may be satisfying but
this is not relevant to the proof. .

EXERCISES
Prove by mathematical induction, » being any positive integer.
1 Z2HAE 20 = 1) 4 20 = n(n 1), ¢y

Soluti?n: Part I If n = 1 the series on the left of equation (1) reduces
to the single term 2. Byt 2 = 1(1 4 1), so the equation holds if n = 1.

Q.
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Part II. Let r be any value of n for which equation (1) is true. That is,
244+ - 4+20—DF2r=r@+ 1) =r2+r #)]

We wish to show that the equation obtained from (1) by letting n = r + 1
is a consequence of equation (2). We are interested in the question: Is
244+ +2+20+ D=0+ DI+ +1T=r4+3r+22 (3)
The left side of equation (3) contains all the terms of the left side of equation
(2) and the single additional term 2(r 4+ 1). Subtracting equation (2) from ~
equation (3) we obtain \
2(r + 1) = 2r + 2, A o
O\
an identity. Thus equation (3) is implied by equation (2) and the :Phoof ‘of
Part II is complete. Equation (1) is therefore valid for all positive integral
values of n. A )
Remark. 'The proof in Part II can also be made by addirjsg"the (r 4+ 1)th
term of the progression to both sides of equation (2)«and,feducing the ex-
pression on the right to the form (r + 1)(r + 2). O www.dbraulibrar;
. KPs)
21+24+38+ - +n=3@+1. L™
% 3
$.1434+5+ -+ @n—1) =n%_{
”'.. 1
434+6+9+124 --- +3n=...§{”(”—2+—)-
5. 24224 ... 4 28 = 2(20 =D,
1,1 I\ AN /1y
arat e+ (g &=

1 1 1 __n_,
Tt N T am D Tl

[=2]

RS CINED D O én(n + D2n + 1. |
x'\n'
2\ n¥(n + 1)2 2
9. 13 2?..4i----+n3=—-—-—=(1+2+"'+n)'
AN 4

&

10, @2 y2» is divisible by = + y.

4 n\’ L 3
L, a4 4 e g divisible by & + v

12, g =g+l 4 gzt 4 -+ + a2+ e L

—a

13. Establish the formulas for the last term and the sum of an arithmetical .

progression by mathematical induction. |

92. Meaning of r!. The symbol !, read ““factorial ,”” * is used
to indicate the product1 -2 -3 ---r. Thus, 3! =1-2-38=6;

=1.2.3.4.5.6-7 = 5040,
\
* The symbol |r is often used to represent factorial r.
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EXERCISES
Evaluate the following expressions:
9! 8! 315! 31+ 5!
1. a' 20 ﬂ' 3. '4_!" 40 T
9! rl A
5. 3!—6!. 6. Prove (7:‘1—)—' =T 1. ‘(T — 2)' =1
93. Binomial theorem; positive integral exponents, By multi-\
plication, we find A
(@ + 2)* = a® + 2az + 22 \ N
(@ + z)* = a® + 3ax + 3az? + 23 A
=a3+3a2z+3.2ax2+x3. K7, N0
21 oV
(@ + 2)* = a* + 40’z + 6a2e® + daz® gl
= a* + 4a’z + -3 310.2:02 —I—.‘L\g 2 + 2t
2! WLV 3
If n represents the exponent of the ’};u‘riomial in any one of the
above three cases, we notice: R\ ’

(1) The first term is a». N

(2) The second term is ne"Se.

(3) The exponents of a~decrease by unity from term to term
while the exponents of «lincrease by unity.

(4) If in any termthe coefficient be multiplied by the exponent
of @ and divided by, the exponent of  increased by unity, the result
is the coefﬁcienf"bf’ the next term.

Forn < f{{,‘we’may then write

'"\§~ -
(a + xx\'s__f a* + nan—lx + w an—2x2 + A
nn—1 - (n—r+92) .
w\: \ + (7‘ — 1)' ar—rtlgpr—1 4 e 4+ 2™

Here the question naturally occurs: Does the expansion hold

for n 2 52 It can be shown by mathematical induction that it
holds for any positive integral value of 7.
Assume

(@ + 2)™ = am + mam1y 4 m(mz'—-
mm ~1) - (m — 2
+ (r — (17)'@' T2 amrHpr=l 4. 4 g™

1)

am 22 + ...

B
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Multiply both members of this assumed equality by @ + «, and we
obtain

((l‘l‘x) m+l — 1

gmtl -+ mamz + oo+ m(m - )(r.—-g)nl_ r + 2) amrtipr-i + e + ax™

+ a™x + e + m(m _ 1)(7—257:1 — T+3) am gl + e + maxm™ + gmil

=g 4+ (m 4+ Damg 4 -+ + (m + 1)m(;'_'1()'”" —r+3) a1 L

+(m+1azgm+zm* O\
This expansion is the same that would be obtained by subgtitufing
m + 1 for m in the expansion of (a + z)™ Hence, if the'expansion
is true for n = m, it is true for » = m + 1. Since We Know it is
true for n = 2, it is true for n = 3, and so on., Herice, when 7 is

Q!

any positive integer, ’ www.dbraulibra
(a+x)" = a* + na"*x + n___(nz—' L) a"“’xﬁ*ﬁ}’ .
+ n(n — 1)(1 o (17; L_ 32 a1 e e xm,

This expansion of a binomiai:iéacalled the binomial theorem.

3

94. The general term of (a + x)*. In the expansion of (a + z)7,
the rth term is o)

n(n ~ YW —2) - (= 1+ 2)
0 =11 ’

which may &lso\ be written

\Y n!

\ n—-r+1xr—1'
,’(% (r — 1)!(n—T+1)!a
} /The term involving z” is
Jnn - -2 - n—r4+1) . _ ol
T a x_rl(n_r)!a X,

Each of these terms is sometimes called the general term of the
binomial expansion. o

In this chapter the exponent n in the binomial expansion 1s
limited to positive integral values, but no assumption has been
made with regard to a or z, so we are at liberty to use the expan-
sion no matter what sort of numbers a and z may be. Thus, in
@~ 4% g = 2p and z = — 4% In a later chapter it will be
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shown that the expansion may be interpreted so as to hold when n
is a negative or fractional number, but in that case the number ¢
must lie between — @ and + a.

EXERCISES
Expand the binomials in exercises 1-11, simplify, and check the result for
the special case in which each letter is equal to 1. ~
1 (27 — 3O
Solution.: DY
(@2 — 3y)* = (20)* + 4@0)(— 3y7) + 6(20)(— Y1) + 4(20)(— G
+ (= '3yt = 162t — 9623y + 216a%° — 2162y’ + 81y*

Check:
(2 —3) =16~ 96 4 216 — 216 + 81>
1=1. o)
2. (a + 2)8. 8. (z — 3y
8. (a— o). 9. (e Vo).
4. (a + b). .‘\" 1\¢
5. 2 — 2. xR ("” * 5) '
1 4 ,:.: e 1\¢é 1\6
o (g + 2] SV () - (-2
7. (1 + a)s. O
Expand by the binomial theerem and simplify:
a 1 "‘\»\ a b \¢
12, . N 18, (—= - ==Y .
2 b ¢ & \J Vb vz
13. (Vz — Vs, ‘ 19. (@ + b + )%,
1 A Hint: Consider (a + b) as repre-
14 (— .
(\/5 ‘f‘ V?‘}' senting one number.
15. (gl dys, 20. (\/5 +24 1)3.
16, G gy, v
6, GV 1A s 2
ARG - 1 w(5-Z+1)
\\ “Find the first three terms of each expansion and simplify:
22, (s} — 3y, 23, (a% - ga—%)“.
3

Find the last three terms of each expansion and simplify:

1
2, (;—Z - a‘%>10~ 25. (z% + zd)s,
26. Find the seventh term in the expansion of (z% — 2y,
Solution: The rth term is given by the expression

nn—1) -.. (n—r4+2

) n—r —
T =101 an g,
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n=1,r="7a=2zafz= -2 n—r+2=286.

Substituting these in the expression for the rth term, we have

27.
28.
29.
30.

31

32.

33.
34.

11-10-9-8-7-6
6!
Find the fourth term of (@ — 4b)2.
Find the eleventh term of (22 — y)77.
Find the middle term of (z? -+ 3y?)8.

Find the fourteenth term of (a + b)%.
13

zr a

Va y
Find the sixth term of (zVy + y V)"

Find the middle terms of (1 — ).
Use the binomial theorem to find (102)5,

Find the eighth term of

Hint: 102 = (100 + 2).
Use the binomial theorem to find

36.

(99)¢. 36. (51)5.

"

A"

(23)5(— 22)8 = 2956823y,

Q)

N

D)
'..\\ -
U

2%
N\
)

www.dbraulibrai

\ ,"x\ 37. (.98)s.
38. (1.1)%, correct to four significant figures,”
39. (1.1)1, correct to four signiﬁcant,:ﬁ’g}ires.

40. Number the terms of the bil}d’;:rﬁal expansion (1 + 1)5. With these
numbers as abscissas and with the‘terresponding value of the terms as ordi-
nates, plot points and connecithe points plotted by straight lines. From
this figure give a general dese“(h)tion of the manner in which the successive

terms

increase and dech S
\

Ny



CHAPTER XIII

COMPLEX NUMBERS N\

95. Number systems. If our number system consisted of ‘gero
and positive integers only, the solution of an equatior{ “stich’ as
3z — 2 = 0 would be impossible ; for no number il}‘igpe' system
considered satisfies this equation. We can extend,the number
system so as to include the class of numbers to Wl?idl the solution
belongs. These new numbers are the rationahfractions.

While the solution of 3z — 2 = 0is possiblein a number system
composed of zero, positive integers, agd\’ Tational fractions, the
solution of an equation such as z + 4520 is impossible. To meet
the demands of such equations, wefind it expedient again to ex-
tend the number system so as toiticlude the negative numbers.
In a number system thus extetded an equation ax + b =0,
where ¢ and b are any integers.or fractions, has a solution.

The solution of an equation such as 22 = 2 demands a fur'thel‘
extension of our numbet'system. It-must be made to include irra-
tional numbers, tha‘t\is,"numbers which cannot be represented by
the quotient of e integers (see pp. 63, 64). But the number
system thus extended is not sufficient to meet all the demand§ of
the equationswshet in algebra. In this number system it is im-
possible_0y'solve certain quadratic equations, for example, the
equation$ 22 4+ 1 = 0 and 22 — 6z + 13 = 0. It is necessary
againfto extend the system so ag to include numbers of the form

L& bi, where a and b are real numbers, discussed in Art. 1; and
\Where 7 is a symbol whose Square is — 1, that is, ¢ = v/— 1 (see
Art. 47). These numbers are usually called complex numbers and
sometimes imaginary numbers. When ¢ — 0 they are called pureé
imaginary numbers.

The term “imaginary number” j
The numbers are imaginary in th
hegative number, or an irrational
ber system consisting of positive integers,

At this point the question may be asked, — In working with

s here used in a technical sense.
€ same sense that a fraction, 2
number is imaginary for a num-
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this new system which includes complex numbers, may we not
find it necessary to add new numbers, at present unknown, just
as we found 1t necessary to add fractions, negative numbers, and
irrational numbers to our system of positive integers? The
answer to this question is that the system of complex numbers
is sufficient to meet the demands of the equation.

While we have seen that the solution of equations with integral
coefficients demands fractions, negative numbers, irrational nums
bers, and complex numbers, it is not to be inferred that all numbess
are roots of equations with integral or rational coefficientgs For {
example, the irrational number 7 cannot be the root of an equatlon i

!
|
i

with rational coefficients. The proof L AT
is beyond the scope of this book.* xS
MY Wwy.dbrdulibrary]
96. Graphical representation of S 2+84
complex numbers. We have seen 1 27
that all real numbers may be rep- g T
resented by points on a straight . 25 5 ¥

line. The complex number z + zy'. X
depends on two real numbers zand
¥, and may be represented graphic-
ally by a point in a plased Two
lines, X'X, Y'Y, are dxa’Wh perpen-
dicular to each otherand intersect-
ing at O, Fig. 20}y To represent <.‘
the number 2 +\37,, measure off on X'X to the right the distance %‘
2, and up the distance 3. In general, the ‘f
graph of the number z + ¢y is the point iii
whose coodrdinates are (z, y). The line X'X .:{i
|

:

-3r41 54
Ty’
Fic. 29

is often called the axis of “reals’” and the
line Y'Y the axis of imaginaries.

* Tt is often convenient to represent com-
plex numbers by another method. Con-
nect the point which represents = + sy with

Fia. 30 the origin as in Fig. 30. Let the length i
of this line be r. The point can then be represented by giving n:
- i

* See Klein, Famous Problems in Elementary Geomeiry, translation by Beman
and Smith, p. 68. *
The remainder of this article and the articles marked * may be omitted by

those who have not studied trigonometry.

£

N
3
—
(0]
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the length r and the angle §. From the figure, using the definitions
of sine and cosine given in trigonometry, we have

z =7rcos b,
y = rsin 0,
24y =1

Hence, the number z + ¢y may be written in the form
z + 1y = r(cos 8 + 2 sin 6).

This form is called the polar form of a complex number, ‘Khe
angle 0 is called the argument or amplitude, the length themodu-
lus or absolute value of the complex number. It should bé noted
that the complex numbers include all real numbersy In Fig. 29,
the real numbers are represented by points on tbe}hhe X'X. 'ljhe
pure imaginary numbers are represented by\points on the line
Y'Y. p \\;

97. Equal complex numbers. If two }omplex numbers a + b
and ¢ 4 d? are equal, then o = ¢ and b= 4 For, if

: a+bz=‘c+d1 )
by transposing, a— c (d ~ b)z. @

Unlessa —¢c=d - b = 0 we should have a — ¢, a real num-
ber, equal to (d — b)z,&m imaginary number.
2
Conversely, if, a\xo ‘and b = d,

. a+b=c+ di

Hence, when any two expressions containing imaginary and redl
terms are e@ual to each other, we may equate the real parts and the
zmagmqy parts separately.

In'particular, if a + bi = 0,a=0andd = 0.

~O EXERCISES

\ / Represent graphically the following numbers and in each case find the
argument and the modulus:

1.2 -3

Solution: The number is represented in Fig, 29,
The modulus r is given by

T=VaE i+ =v449 =13
To find the argument 6 we have

tan0=5=_ v0—arctan—§, sinh = —

y | 2 N

:J\_“
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2. 2+ 3 7. — 1. 11, 6 + 0:.
3. — 4+ 3. 8. 7z 12. — 7.
41+i-‘ 9. — 7. 13§_1
5. 1 — 3. 10 73 2
6. 6 — 8. "3 14. 0.6 + 1.2
Write the following complex numbers in the form z + 2y:
15. 6(cos 30° + 7 sin 30°). ~
Solution: We have r = 6, § = 30°. v N L
z=rcosf =6 - —3=3\/§. "’\".\
2 N\
1 & N/
y=rsinf=6-5=3 &
Hence, 6(cos 30° + 7 sin 30°) = 3Vv3 + 3i. .m:\'\'
16. 4(cos 60° - ¢ sin 60°). 20. 8(cos 0° + %&in*0°).www.dbraulibrar;
17. 2(cos 120° 4 ¢ sin 120°). 21, 5 (cos 2103\4- 4 sin 270°).
18. 6(cos 90° + 1 sin 90°). 2 V¥
19. cos 135° 4+ ¢ sin 135°. ¢ ~t v’

22. If (z + 2) + i(y — 2) = 0, what are, the’values of z and y?

What must be the value of z and yvm (‘)rder that the following equations
may be true? o\

23. x—y—}-l(x—i-y)—z-l—ﬁz Y26, 22+t —y) =1+

24, 224 Ty+i(3z—2y) = 3—\131 26 c+ 2 +ayi+ i —% —5=0.

98. Addition and s\btractlon of complex numbers. We assume
that the number 7 ¢ like other numbers obeys all the laws of algebra.
Given two complerx numbers a + bi, ¢ + d¢, we may write the
sum and dlfﬁgxence.

Thus,,\\:@z + i) + (c + di)

N (a + b)) — (c—i—dz')
Hénce to add (or subtract) com-
\Qlex numbers, add (or subtract)
the real and imaginary parts sepa-
rately. The result is a complex
number.

To add two complex numbers,
@+ b and ¢ + di, graphically, we
Tepresent the numbers as points 4
and B in Fig. 31. Connect each
boint with the origin 0. Complete Fre. 31

i

(@ +c¢) + b+ i,
(a —¢) + (b — d)i.
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the parallelogram, having OA and OB for adjacent sides. The
vertex P represents the sum of the two given complex numbers,
For, from the figure the coordinates of the fourth vertex are 04
and QP. But

, 0Q =0D + DQ = a + ¢,
QP = QR+ RP = b + d.

Hence, P represents the point (o + ¢) + (b + d)7 which is the,
sum of @ + b7 and ¢ + ds. A

To subtract one complex number from another graphig?ﬁy,\say
¢ + di from a + b7, we graph the points which represergtl.— c—di

and a + b, and proceed as for addition. RO
_ EXERCISES o)
Perform the following operations algebraically and graphically :
L7+ 2) + (1 +4). 8. (— 2 HANY (— 2 — 4).
2 2+1) + (— 3+ 20) T G807 + (4 — 7).
3. B+ 4 + (1 — 5i). 8. (0H2) + @2 — 5).
L (=3 -9 + @2+ 2). QU+ 20) + (3 — 4) — (5 — 60).

[

(14 2) — (%-{-gz) oW 6400+ (-2 4 - 34
* 99, Multiplication of Complex numbers. Let a 4 b and

¢ + id be any two cdmiplex numbers. Since 4 obeys all the laws
of algebra, we havé.™

(@ +b) (e + 4= ac + ibe + dad + %d = (ac — bd) + 1(be + ad).
A
The result i§ & complex number. To multiply two complex num-

bers graphically, let the two numbers a + 4b, ¢ + ¢d be represented

by tl}e§p0ints P;and P, (Fig. 32). Reducing to the polar form,
we have ' :

o) a4+ bi = ri(cos 6, + ¢ sin 6,),
< \ ¢+ di = ry(cos 6y + 7 sin 0.).
By actual multiplication,
(@ + b)) (c + dv)
=rra[ cos 6; cos f2+1i(sin 6, cos 62+ cos 6, sin :) — sin 6, sin 6.]
=rr[cos (01 + 85) + 4 sin (01 + 6,)7.

Hence, the modulus of the

product of their moduli and ¢
ments. '

product of two complex numbers is the
he argument is the sum of their arg
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The point P, which represents (a + bi)(c + di) may then be
constructed by drawing through O a line making an angle
§ = 6, + 6. with the line OX (Fig. 32) v
and constructing on this line a segment
OP whose length is rr,.

100. Conjugate complex numbers.
Numbers which differ only in the sign of
the imaginary parts are called conjugate
numbers. Thus, 3 + 2¢ and 3 — 27 are
conjugate. Since

(@ + b)) + (a — b)) = 2a,
(a + b)(a — bi) = a® + D,
and (o + ) — (@ — bi) = 28, R Al
we see that the sum and the product of $we' conjugate complex

numbers are real numbers, but the difference of two conjugate
complex numbers is an imaginary number

EXER'CISES

Multiply both analytically a:nd gra,phlca.lly, finding the arguments and
moduli of the products. m\

L B+ vae+ 21,\\

Solution: X}
(3+‘/gl)(2+2z‘)-—6+61+2\/§z+2\/—i2— 6 — 2V3 + i(6 + 2V3). |
Y - }“ Putting the numbers in the polar form, we have, f

' |

3 4+ V3i = 2V3(cos 30° + ¢ sin 30°), |
24 2i = 2V2(cos 45° + @ sin 45°). _{1
Hence, :
ro=2V3, 1y = 2V2, 6 = 30°, 0, = 45°. ;:

The modulus of the product is, then,
Tire = 4\/—6, ,J

and the argument is 75°. . h“

Let P; and P, in Fig. 33 represent the two given i
numbers. Through O draw a line making an angle
of 75° with the line OX. On this line measure off

the distance

FiG. 33

OP = 4V6.

The point P then represents the product of the two numbers.
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2. (2 4 )3 + ). 8. (1 — &)t

3. (3 +1V3(3 +iv3). 9. (1 — (1 — 26)(1 — 3).
4. (2 — 20)(3 + 3. 10. (0 + 79)(3 — 3i).

5. (2 — 20)(— 2 — 23). 11, (3 4 0)(1 — V3.

6. (1 — )2 12. (0 + 40)2(0 — 49)2.

7. (1 — 43,

*101. De Moivre’s theorem. If two complex numbers 4o
equal, then as a special case of Art. 99, we have

r(cos 8 + ¢ sin f)r(cos 6 + 4 sin 6)

p \:\’
r*(cos O + < simB)*
r*(cos 20 +.3 sin 26).
Multiplying both sides of this identity by r(cos 824 ¢'sin 6), we
have )

i

3(cos 6 + 4 sin 0)® = r3(cos 36 4 ’L"S'II:I 30),
and it can easily be proved by mathemaﬁg}}dinduction that
[r(cos § + ¢ sin 6) ] = r"(cqémﬁ + ¢ sin n),

where 7 is any positive integer. L\ o

This relation is known as De, Mdivre’s theorem, and holds also
for fractional values of the ex;fg‘onent.

To prove the theorem when the exponent is the reciprocal of a

e . . & . .. 1. .
positive integer, consider the expression (cos 6 + 4 sin 6)7 in which
n i8 a positive int er

Let O 0 = ng,
then pN \ )
(cos 6 #sin )7 = (cos nep + < sin n¢>)vlb
'"\'§~ . .
AN\ = [(cos ¢ + ¢ sin qb)"ﬁ = cos ¢ + ¢sin ¢

™
N

I

~O°
N/ De Moivre’s theorem thus gives an easy method of finding any
power or any root of a complex number.

The proof can be readily extended to the case of an exponent
which is any rational fraction.

0 .. 0
€o8 — 4+ 7 sin —-
n n

*102. Roots of complex numbers, From Art. 101, the nth root
of z + 7y is

(z + iy)% = [r(cos @ + 5 sin 0)]% = ﬁ(cos% +- 7 sin g)
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If m be any integer, cos(f + m 360°) = cos 6,
sin(f + m 360°) = sin 6.
We may then write
(x + z'y)%»= [r(cos @ + isin §) o= [r{cos (0 + m 360°)
+4 sin(6+m 360°)}
0+ m 360°]. O\
n

A ¢

g[ 0+ m360° . .

= 77 cos——n—— + 7 sin

oA

If now we let m take the values 0, 1,2, 3, -- -1, wer ﬁﬁd“

results, all different numbers whose nth powers are -j— zy We
may then state the following AN 3

THEOREM. Any number has n distinct nth roots: ~~\

v www.dbraulibrar
EXERCISES A\

Using De Moivre’s theorem, find the mdlcateonwers and roots.
1. (3 + V3, NV
Solution: Writing 3 + V3; in the polar £orm,
34+ V3= 2\/3(cas‘ 30° + 1 sin 30°).
By De Moivre’s theorem, “:» N

~

3 + V3ir =»{2\/_ (cos 30° + 7 sin 30°)7¢
{élélél(cos 120° + % sin 120°)

\\ =~ 1445+ 3V3i)

\.. N o 24 7eVEL
2 3+ VA 5. (% - 5\@')&-
3. (2 ’4\2\) 6. [2 - (cos 30° + ¢ sin 30°)Jw.
4, (3\1r V3iy, 7. (1498
8. (1 -1

”\&'V 2+ 2
\ Solution: Writing — 2 + 2i in the polar form, we have
— 2 4 2 = 2V2(cos 185° + 1 sin 135°).

By De Moivre’s theorem,
V=2¥ %= (—2 +2i)} = [2v2{cos (135° -- m360°) +4sin (135° -+ m 360°)} J}

= V2[cos (45° + m 120°)1 4 7sin (45° + m 120°)].
For im = 0, 1, and 2, this expression reduces to

1+ 4, V2(cos 165° + % sin 165°),

and V/2(cos 285° + i sin 285°)
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respectively. Any one of these three numbers is a cube root of - 2 4 2,
The points P, P;, P;, representing these three numbers lie at equal intervals
on a circle of radius V2 (Fig. 34).

10. V2 — 2, 13. V/27(cos 60° + 4 sin 60°).
11. V2 + 2v3i. 14. V/cos 360° + ¢ sin 360°.
12. V/(cos 60° + § sin 60°). 16. Vcos 21° + ¢ sin 21°,
16. V1. Q
Hint: Write in the form V1 = V/cos 0° + % sin 0°. \\\
17. V5. ¢ a \ T
Hint: Write in the form Vvcos 90° -+ 7 sin 90°. 4 ,.::‘
18. V27, 19. V1. 20.,\Z~5 +712i.
21. If o represents one of the complex "‘\

cube roots of unity found in exercise 16 and P-2%2¢

w, the other, verify that w, = w?, and that A\,J

® = o’ 4L? \Pl -
Find all the roots of the following equas\\,/

tions and represent them graphically: . \.J F, X
22, z3 -1 =0. N >

Hint: 2% = 1. The roots of the.g:z]jfation
are then the three cube roots of Anity. See .
exercise 16, ~

P4\ PS
23, 25 — 8 = Q. 2602 — 16 = 0, =
2. 25 —~32=0. ¢{Mas-1=0
\ : .34
25,25 —1=0.% V28 28~1 =0 Fra

*103. Division of complex numbers. The quotient of two
complex nunbers may be obtained as follows:

dFb _a+ib ¢—id_ ac+ bd — i(ad — be)
z\%—{—id c+id ¢—d ¢t + d2
"\.f;'o =ac+bd_ .ad — be
W cte " targ

N\

This is a complex number. Writing the two given conples
numbers in the polar form, we have

ri(cos 61 + ¢ sin 6)) _ 7i(cos 6, + 7 sin 61) (cos 6 — 7 sin 62)
r2(cos 0 + ¢ sin 02) ~ ry(cos B, + 7 sin 6,)(cos 6, — 7 sin )
_ Tleos (6; — 6,) + ; sin (6, — 62)]
\.&__,‘
73(cos? 0, + sin? 6,)

mLeos (6, ~ 6) + i sin (9, — 097

I

-
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Hence, the modulus of the quotient of two complex numbers is the
quotient of their moduli, and the argument is the
difference of their arguments.

If, in Fig. 35, Py and P; represent the points
a + ¢b and ¢ + ¢d respectively, the point P which
represents the quotient Z j_- ZZ may be constructed
by drawing through O a line making an angle
9 = 6, — 0, with the line OX, and constructing

Y

Pl

on this line a segment OP, whose length is :71
2

EXERCISES

N
Find the quotients of the following pairs of numbers,“’a]}alytically and
graphically. www.dbraulibrary
1 (4 + 4) +<2+§\/§i)~ 7\
Solution: A+ % __ 4+4  2-3¥RI3+VE 3 V3,
243V 2+3VE 2 — VR 2 2

Writing bi):ﬁli ‘numbers in the polar form, we
o P, obtain ™
“ '} 45 = 4V2(cos 45° + 4 sin 45°),

oy gx@ = % 3(cos 30° + 4 sin 30°).
+8 )
X\\ﬂénce, ry = 4'\/5, ry = é'\/g, 01 = 45°, 02 = 30°

The modulus of the quotient is then g = V6, and

. o\ the argument isf = 6; — 6, = 15°. Let P;and P,

- In Fig. 36 represetit the two given numbers. Through O draw a line, making

o0 angle of 15%4with the line OX. Measure off on this line the distance OP =
6. T:hgn) int P then represents the quotient of the two numbers.

Fic. 36 N/

230 0) = (144 5.4+ (1+9)
\”‘«?r (1 +1) + (2 - 2) 6. 45+ (1 +9).
4 24+2) = 3+ \/51;). 7. (1 4+17) + 4. |
1 ) 1 7 |
(=3 +3v9)+ (-5 - 4v3) |
“@—9) + @B+4). 10. 13i + (2 -+ 30). !

Find the reciprocals of the following complex numbers. Give a graphical
Tépresentation of each number and its reciprocal.
01— 13. 2 + 3., 15. 1 — 2z,

12,1 44 14, i, 6.3+ % ¢



CHAPTER XIV

THEORY OF EQUATIONS

104. General equation of degree n. In the present chapter&
we shall study rational integral equations in one unknown. A4s
stated in Art. 25, such an equation of degree n in z, ean be wr}\ttsn

in the form A
apz® + az™ - - - apaz + a, = 0, « \ 1
(5;:‘. A
where n is a positive integer, ao, @y, - - -, Gn_y, On doxnot involve

z, and ao # 0. The equation (1) is often called the\géneral equa-

tion of the nth degree in x. ’
The funection x\\

f(2) = az + @™t - Gz + an

is the polynomial of degree » in z (s¢é~~Art. 24). The polynomial

of the second degree has been di;salrssed in connection with the
quadratic equation. &N

When f(x) is used in this chéb’ter, it is to be understood to mean
a polynomial in z.
_(ORAL EXERCISES

By comparing the fohb}ving polynomials with the general form, determine
Ny Qo A1y« *y Gp. L)

2D, 8, 2
(a) \ f@) = g%+ 7ot + 8.
®) \\"\ f@) = %xs + %y + 1022 + iz2,
O f@) = G+ V3)z* + 522 + 10.
"N\

\;v The principal object of this chapter is to present methods

hich aid in determining exactly or approximately the real rooffS

of special numerieca] * equations included under type (1). It 1

largely for this purpose that we discuss the graphs of polynomials.

The zeros of the polynomial are the roots of the equation formed
by equating the polynomial to zero. The real roots of the equa-..

tion may then be looked upon geometrically as the abscissas of

* The term “‘numerical equations” is here used to indicate that the coefficient®
are not literal, ;

142
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the points of the X-axis where the graph of the polynomial meets
this axis. The remainder theorem (Art, 105) and synthetic
division (Arts. 108, 109) often save much time in carrying out the
graphic representation of polynomials.

105. Remainder theorem. If r is some constant and if f(z) is
divided by (x — 1) until @ remainder is obtained that does not involve x,

. . . N\
this remainder is equal to f(r).

Ifa polynomial f(z) be divided by (z — r), denote the quo’biépt
by @(z) and the remainder described in the theorem by E.;:‘Then

f@) = (z — r)Q(z) + R. R )
If we put « = r in this identity, we obtain “\‘
fr) = (r - Q) + R. " www.dbraulibrar
But since  (r ~ r)Q(r) = 0, it follows that’;.\\:
R=f0). 2O @

Ezample. Without performing the division, find the remainder when
 + 522 - 3z — 1 is divided by (z + 2)>

Solution. Here f(z) = z* + 523 -1;’ 3z ~ 1,
z—r=z+42 thusr = — 2.

Then Fr) = (52) + 5(— 22 +3(—2) — 1 = 5.

Hence, the remainder\iégf o

Cororramy. Ififly) = 0, then f(z) is exactly divisible by (x — 7).

This corollfzry:\fdllows at once from (1) and (2).

Ezample. .“Wit;lout performing the division, show by the corollary that
¥+ 32 if,{!{acﬂy divisible by (z + 2).

106 Factor theorem. If 7 is a root of the equation f(z) = O, then
(315—:,\9")' ts a factor of f(z).

Bince the hypothesis that r is a root of the equation f(z) = 0
means that f(r) = 0, this theorem follows directly from the
corollary to the remainder theorem (Art. 105).

107. Converse of the factor theorem. If (z — 1) is a factor of
f@), then r is @ root of the equation f(z) = 0.

By hypothesis, f(z) is exactly divisible by (z — r). Thus, in
the notation of Art. 105,

f@) = (z — NQ).
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Hence, f@) = 0 - Q(r) = 0, which means ¢hat ris
a root of the equation f(x) = 0.
‘ EXERCISES

1. Find the remainder when 22 — 7z + 14 is divided by (z — 3):
(a) by performing the division;
(b) by the use of the remainder theorem.

N\
Without performing the divisions, find the remainder after each of the

following divisions, by the use of the remainder theorem: 2\ N\
2 Bt — 43522 —bx+ 1) + (x — 1). ;‘\
3. Bt — 4+ 522 — 5z + 1) + (z + 1). A\
4 (2* — 5ot + 3z — 1) + (z — 3). e \ e
b, (2 — 5224+ 2 ~ 3) + . ~.;\\
6. (2 — 2% + 4z — 1) + (z + 2). \%

7. Show that (x — 2) is a factor of 23 — 7z + Giby the use of the corollary
to the remainder theorem, and also by actual Sion.

8. Given f(z) = 25+ a5. Find f(— a). Is x + a a factor of z° + @7

9. Given that 2 is a root of the equatlona:“ — 16 = 0, write a linear factor
of z* — 16. Find also a third degree facter of z¢ — 16.

10. Show, by the remainder theoxem that z» — a* is exactly divisible by
(z + o) if nis even, ™S

11. Show that z» 4 a* is drv1s1ble by (z + a) if n is odd.

12. By means of the ce‘mamder theorem, find a value for & such that
23 + 3ka? — 4z 4 104 1v1s1ble by z + 2.
N

108. Synthetic\division. Since we shall often have occasion to
divide a polynOmlal f(x), by (x — an assigned number), (1) in
finding vahkes of f(z) for assigned values of z, (2) in finding factors
of f(z), a)nd (3) in solving the equation f(z) = 0, it is important
to ledr a short method of performing the divisions. We shall
nowaillustrate and develop Horner’s method of synthetic division

~ f(?r dividing f(z) by (z — 7).
) Illustration: Divide 5z — 628 + 822 — 24z — § by (z — 2).

By the ordinary method

Szt — 6:03-}-89:2—243:—6]&:—-2

5zt — 102 52° + 42* 4 16z + 8
4x* 4 822
427 — 822
1622 — 242
1622 — 322
T & — 8
8z — 16

+ 10
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Manifestly, the work can be abridged by writing only the coefficients, thus,
5— 6+8-—-24—-6[1-2

5-—10 54+4+16+8
T F4+8
+4-8
+ 16 — 24
+ 16 — 32
+ 8~ 6
+ 8- 16 Q
+ 10

O\
Since the coefficient of z in z — r is unity, the coefficient of the fitfsf* term
of each remainder is the coefficient of the next term to be obtgi’ge‘d’in the
quotient. Further, it is not necessary to write the terms of th dividend as
part of the remainder, nor the first term of the partial prodycts)
The work thus becomes: AN

5— 6+8—-24—-6|1—2 v www.dbraulibrary
- 10 O
+ 4 (&
_ g ,‘N.‘
+ 16
— 32%3
B
16
8T 410

We may omit the first term 6f $he divisor and write the work in the following
more compact form: e\J

N6+ 8—24— 6/ —2
AN —~10— 8—32—16 1
,'\..:3“54_ 44164+ 810

If we replacg\éwé by + 2, we may add the partial products to the numbers
in the dividettd® Then, we have:

O 5— 6+ 8—24— 6[2
;;.' + 10+ 8-+32+16 !
N E+ 4+16+ 8+10

7N ol - . .
\ The quotient is 523 4 422 + 16z 4- 8, and'the remainder is 10. |

109. Rule for synthetic division. To divide f(z) by (x — 1), ar- ‘
range f(x) in descending powers of x, supplying all missing powers by
bulling in zeros as coefficients. ) |

Detach, the coefficients, write them in a horizontal line and in the 1
order aq, o1, G, -+, Gn.

Bring down the first coefficient ao; multiply ao by r, and add the |
product ¢ ay; multiply this sum by r, and add the product to as. i
Continue this process; the last sum is the remainder, and the pre: b
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ceding sums are the coefficients of the powers of = in the quotient,
arranged tn descending order.

Proof of Rule. This rule may be established by mathematical induction.
By long division,

Al A e e s e i e il w0 I i .
e e (e R N C T e ) L

Qx” — agre™ !
(a; + agr)x™ ! + @z 2 K. ‘\’
(a1 + a2 — (arr 4 ap?)z? S N
.......... N

We note that the coefficient of "2 in the quotient is’ formed according
to the rule. Assume that the coefficients in the quotier}b down to that of
a7~ are formed according to the rule. On this hypeth®sis, proceed by long
division to find the coefficient of "~ in the quotienty This may be exhibited

as a continuation of the division above as follows{)

N

(as—l + 1@y + - -+ Ts—lao)xn—s+l + asxn—sQJl_’ as+lxn—s—1 4 e 4 an
(@1 4 16 + - - + ra)zr N — (rg A Pa,y + - -+ riag)T.
(@ +raes + s + -+ + 102" Pl F - T an,

This shows that if the coefficientsint the quotient down to that of z»™ are
formed according to the rule, the¥oefficient of the next lower power is formed
according to the rule. Henqg; the rule is established.

o
: '\w" EXERCISES

Divide by synthetic division and check by ordinary division.
1zt + 328 —.\‘5;:"'—}- 3by (z — 4).

Solution:x,\:,,.‘ 1+34+ 0~ 54 3 |4
PR + 4428 + 112 + 428
O T+7+ 28 107 ¥ 431

The quotient is 2% + 722 + 28z 4 107 and the l:ema,inder is 431,
.'.\:}P;erform the followin
\ Aivision:
2. (2:3——41:2+6x—3)+(:c—1).
3. P +422~3c—-6) + (x+1). Hint: In this case, r = — 1.
4. (22 — 322+ 3) + (2 — 2).

g divisions both by long division and by synthetic

By synthetic division, find the quotient and remainder in the following:
6. (313 — 422 — 5) + (z — 2).

6. (8 — 27) + (z — 3).
T —2~3) + (z+4),
o 8 (7 — 32— 2) 1+ (g — 1)
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9. Given f(z) = 323 — 522 — 3 + 10. Use the remainder theorem and
synthetic division to find each of the following: 7(2), f(— 1), £(3).

10. Given f(z) = 62° + 2* — 31z + 24. Find f(— 2), f(~ 1), f(1), f(2).

110. Graphs of polynomials. When the coefficients of f(z)
are real numbers, the march of the function for different values
of z can be clearly presented by the use of the graphic methods
explained in Arts. 15, 16. To any assigned value of z, there cor<™
responds one and only one value of the polynomial f(x). This is
sometimes expressed by saying that v \ )
J(z) is single valued. The fact that the \
graph of f(z) is a continuous curve (see R
Art. 16) makes it of much service in the 712
theory of equations.

N

Y A

7
A
¢

VAR ulibrary
EXERCISES AN

A
Construct the graphs of the following funcs N\ 1" I
tions and locate their real zeros approximatelyt 4 l
(to within 0.5): s

*

L f(2) = 2% — 622 + 11z — 6. o0 /

As pointed out in Art. 108, synthepi‘édﬁision
furnishes a convenient method ofsevaluating | L X
f(@) for different values of z. TKUs f0.5)isob- © 7
tained as follows: imt\
1-6 +11 \'\6’ (0.5 /
0.5 — 275 + 4.125 l f

1- 55+ 7825 — 1875
Hence, 7(0.5) ='=:’— 1.875. |
In this way {he following values are ob- |
tained: ’\ W |
H(=2) 25760 F(1.5) = 0.375. |
J(= Ina"— 24 7@ =o. |
#<0.5) = — 13.125. f(2.5) = — 0.375.
p Y= —6. f8) =0.
0.5) = — 1.875. f@&) = 6.
) = o, F(5) = 24. Fig. 37

The graph is shown in Fig. 87; it presents to the eye the following facts: i
(1) (z) has zeros at 1, 2, and 3.
(2) () is positive when 2 > z > 1, and when z > 3. ;
) (2) is negative when z < 1 and when 3 > z > 2. ﬁ
Query. Tf 2 were assigned a numerically very large value, say z = 100 I
Tz = — 100, how would the value of the highest degree term, x3, compare Ji
1 numerjeqj value with all the other terms together? :
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9, 1% — 622 + 8z. 8. 20 — 328 — 202 + 27z + 18. ;
3. 43 — 12z + 3. 7. 3xt — 428 — 1222 + 3. s
4, 38—z — Tx + 3. 8. 28 — 2z — 4.

6. 2t — 2% — 72* 4 8z + 12.

111. Graphical solution of an equation f(x) = 0. The real roots
of an equation f(z) = 0 are the abscissas of the points where f(z) |
meets the X-axis. It is then obvious that in locating the zeros 6f »
certain functions, f(x), in Art. 110, we are also locating the, ro\ots
of f(z) = 0. N\
' ORAL EXERCISES \

Give the roots of each of the following equations: )
1. 23 — 6224 11z — 6 = 0. (See exercise 1, Art. 110« )\
2 2t — 2% — T2+ 8 4+ 12 =10. (See exerclse 5 Art. 110.)

112. Number of roots of an equation. \E\ery equation, f(z) =0,
of the nth degree has n roots and no more

To prove this proposition we agsume the fundamental theorem
that every equation, f(z) = 0, has at least one root. More ex-
plicitly, we assume that N

*

There always exists at least one number, real or complez, which

will satisfy an equatwn‘sq“ the nth degree, whose coefficients are 41y
real or complex nu Isqrs o

Let r be a rogh of f(z) = 0, then (Art. 106) (z — rv) is a factor of
f(z) and ’,

'f (z) = 0 becomes (x — r)fi(z) = 0, 1)

Whereg(‘.z) i1s a polynomial of degree n — 1, beginning with the
term{@z" . By the theorem assumed, fi(z) = 0 has at least oné
ro(’)to Let r, be a root; then

N fi(x) = 0 becomes (x — r)fo(z) = 0
and f(x) = 0 becomes (x — r)(z — r)fez) = @

in which f2(z) is a polynomial of degree n — 2, begmmng with the
term aox’f‘z Continuing this process, we separate out 7 linear
factors with a quotient aq, so that

f(@) =0 becomes ayf(x — r)(x — 1) - (z —72) = 0 @)
where 71, 75, -« -, 1, are n roots of f(z) = 0.

* This fundamental theorem was first proved by Gauss in 1797. For proof
see Fine’s College Algebra, p. 588.
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If f(z) = 0 has another root different from any of these, let r de-
note such a root. Then, from (3),

a(r —r)(r — 1) - (r — 1) = 0. 4)

But here we should have the product of factors equal to zero when
no one of the factors is zero. As this is impossible (III, Art. 5),
there are not more than n roots of f(z) = 0. Hence, every equas,
tion of the nth degree has n roots and no more. Furthernlore,
every polynomial of the nth degree is the product of n lineaf fac-
tors. It is not, however, possible, in general, to determine these
factors if 7 exceeds 4 (see Art. 128). Two or more of thei’((t roots of
f(z) = 0 may be equal to each other. Equal 1;0(}{;5 are called
multiple roots. If the same root occurs twice, it 'is?saflled a double
root; if three times, a triple root; if m time§\(wy > 3 T@Bt llibrar
multiplicity m. Thus, (x — 2)5 = 0 has t}}e\l:x)‘ot 2 of multiplicity
5,and (x — 1)X(z — 3)(z — 4)3 = 0 has 4 double root equal to 1,
a single root equal to 3, and a triple roedequal to 4.

Cororuary 1. If two polynom@"dls ;)f degrees not greater than n
are equal to each other for more. thcmn distinct values of the variable,
the coefficients of like powers of-the variable are equal.

Let
Aox™ + @zt —l—\v\ +an = bz" + bzt 4+ - + b, (4)

for more than n vhlues of .

From (4), <
(a0, 802" + (a1 — b=+ - + (@ = b) = 0. (3)
Then';%“' ap — by =0,
\ \ a —- b =0,
X SR
\\ ) G, — b, = 0.

For, if any coefficient in (5) were not equal to zero, we should
have an equation of degree equal to or less than » with more than
" Toots, which is contrary to the theorem just proved.

Hence; Ay = bo, ap = bl, rer,p = b,,.

CoroLLary IT. I f two polynomials of degrees not greater than n
are equal for more than n distinct values of the variable, they are equal |
for ay values, and the equality is an identity. L’
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113. Forming an equation with given roots. If ry, 72, - -+, r,are
given roots of an equation f(zr) = 0, then it follows from Art. 112
that the equation may be written in the form

f@) =afz =)@ —m) - (@ —1) =0

in which we may assign to ao any value not equal to 0.

In case all the roots are integers or rational fractions, a; may be
selected as an appropriate multiple of the denominators of the(™\ :
fractions in such a manner that all the coefficients of the terms of
the equation are integers. N,

'\
Tllustration 1. Form an equation that has roots 1, — 1, %, % and no others.
N

Solution: The equation is of the form
N

@z — D+ D - -3 = 0,“’§ @

By choosing a; = 6, we obtain an equation free frO{n‘fractiona‘l coefficients.
This choice of ao is equivalent to multiplying the dast factor of the left-hand
side of (1) by 3, and the preceding factor by 2y t}xnfs' obtaining

@D+ DEs - DEP=2) =0,
or bzt — 728 — 42% Tz — 2 = 0.
Illustration 2. Form an equation “with integral coefficients that has 1 as

. 1 S\
a triple root, zasa double roof, % as a single root, and no other roots.

Solution: The equat@n\ ﬁg,}ouowing illustration 1,
B 1%z — 1@z — 1) =0,
or 12z6.=-:-"52x5 -+ Olzt — 8228 + 4022 — 10z - 1 = 0.

MK

o EXERCISES

&
Find}ic.h' root of the equation and indicate the multiplicity of each root
L8 =2 -3z +1) =0. 4 o — 3294 222 = 0. }
2 Bz — D@2z +1)%z+2) =0. . 4z — 1)z — 3) = 0.
\;'3. @E—DE+z+1) =0 6. 3z — 2)(z 4+ 8) = 0.
7. Show that 2 is a double root of 2% — 92 + 122 — 4 =0.

8. Show that 3 and % are each double roots of

9x5—51x4+58x3+58:02—-51x+9 =0,
and find the other root.

9. Form equations that have the following roots and no others.
(a) 2,8, 5.
® 1+v21-+733
(© 1421~ 2 wheniz = — 1.
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10. Form equations with integral coefficients that have the following

roots and no others.
2

(a) a double root 3, and single roots % and 3

(b) a triple root — 1, and a double root %

11, By means of the theorem concerning the number of roots of J(@) =0,

show: (1) if f(x) = O be multiplied by a polynomial in z, the resulting equa- /

tion has more roots than f(z) = 0; (2) if f(z) = 0 be divided by a polynomial
in z, which is a factor of f(z), the resulting equation will have fewer roots ,tQE&
f@) = 0. '\ K

114. Comments on the graphs of factored polynorqialﬁ.
Given RY /

ax® 4+ ax™t 4+ ... + a, = ao(x - 71)(x — Tz) '. ¢, (f"’_"_""fﬂ}.:)raulibrar)

AN,
We assume, for the present, that ao, ai, - -»’,;En are real numbers,
and further for convenience of expressigri:?hat a, is positive, al-
though this is not a necessary limitat;'goh.' In Art. 110 the graphs
of a few polynomials are plotted. .;Sjome important properties of
these graphs appear when the polynomial is separated into linear
factors. We cannot at this point'make the treatment so complete
as later, but we may well consider two important cases:

L. When the factors g A, & — 19, + + -, & — 7 are all real and dis-
tinct. \\

Arrange the fa.gtbré sothat e > 7> v > Fact > Ta then
% > ry all the factors are positive and the graph is above thg X-axis.
When r, > @ &'y, one factor is negative and the graph is below

Ty n

Fic. 38

the X-axis. When 7, > z > r3, two factors are negative, and the
graph is again above the X-axis. Continuing this process, we see
that the graph crosses the X-axis at the n points, z = 1, = 1,
"'y % =7, and we obtain a general notion of the nature of the
turve. See Fig. 38.
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2. When the factors are real but some of them repeated.
To discuss the graph in this case, take for example,

f@) = aole — r)2z — r)(z — 13)5,
and let T .

Since the factors # — r, and x — 73 occur to powers with odd ex-
ponents, it follows as above that the curve crosses the X-axis at.\
z =rand z = r;. But it does not cross at z = 7, since the sign
of f(z) is the same when z > r; as when r; > = > 7,, and thelcuxye
touches the axis &t@ = n.
\A 5 AC/ In general, ~f a faclor
s o X (x—— )™ agBrs where m
is odd,the "graph crosses
the 2:aa%s at x = r (see
) Aand B, Fig. 39). More-
over, if m = 1, the graph tends to cut thé\z*axis as at B, Fig. 39,
whereas if m is an odd number greaterthan 1, the graph not only
crosses at x = r, but is tangent to thq.x;amis atz = rasat A, Fig. 39.
If h is even, the graph merely touchies the x-axis without crossing (see
C, Fig.39). These comments, in :i?calics, follow in part from studies
in the calculus, and may be ’acéepted here without proof.

Another case is discusged in Art. 116, where imaginary factors
oceur. O

&
115. Theoremeoncerning imaginary roots. If a complez num-
ber a + bi is\a @00l of an equation f(z) = 0 with real coefficients, the

conjugate qo@p’lex number @ — bi 4s also a roof. Thus, tmaginary
00l occumen conjugate pairs.

Fic. 39

. The eorem is established if we can show that [z — (@ — bi)]
is a factor of f(x) (see Art. 107). Since [z — (o — bs)] is a factor
mgffche quadratic expression

D) =
De) = 20+ @+ 8 =[x ~ (4 + bi)][z — (@ — b)], )
our theorem is proved if we can show that D(z) is a factor of /@)

Ditfl,idte (J; (z) by the second degree expression, D(z), until we obtail
a first de i A ¢
may writ(;gree remainder, ¢z + d, and a quotient, Q(z). Then We

f@) = D@)Q(z) + ez + d, @

where ¢ and d are real numbers gine .
S since t, ; D)
has real coefficients, e the quadratic function



GRAPHS OF f(z) 153
Since, by hypothesis, (& + b7) is a root of f(z) = 0, we have
fla + b)) = 0. From (1),
D(a + ) = 0.
Hence, if we substitute z = (a + b7) in (2), we get
0=0-Q(+ b)+ cla+ ) +d,

or (ac + d) + beg = 0. 3) ~
Equating reals and imaginaries on the two sides of (3), we have
ac +d =0 and bet = 0. .\'(’t)\

Therefore, bc = 0. Since, by hypothesis, (a 4+ ¥) is a eomplex
number, b ¢ 0. Hence, ¢ = 0. Then from ac + d = 0, of (4), we
get d = 0, and thus the remainder cx + d in (2) is zexo‘ and D(x)

isa f&CtOI' of f(z). www.dbraulibrar

CoroLLARY. Any polynomial f(x) with real\eoeﬁicwnts can be
expressed as a product of real linear and quadm‘hc factors.

Since imaginary factors of f(x) occur ifi ¢onjugate pairs when the
coefficients in f(x) are real, it followswhat in this case f(z) may be
regarded as the product of ao, of realfinear factors of the type (z — 1),
and quadratic factors of the types

z—a2+ b =>—a— bz —a+ b),
where a, b, and r are rea{numbers When all the roots of f(z) = 0
are real, the polynomN f(z) is the product of real linear factors,
but if () = 0 has§ indaginary or complex roots, f(z) contains real
quadratic factors“6f the type (z — @)? + b* which cannot be
separated mto\real linear factors.

116. G’f}phs of f(x) when some linear factors are imaginary.
In Art2114 the graph of f(z) is discussed when the polynomial is
the pr\oduct of real linear factors, and it is shown that, correspond-
g'to each linear factor (x — ), the graph meets the X-axis at
¥ =1, It should now be noted that

(z —a)?+0b2>0,
for all real values of x, and there is, therefore, corresponding to such

Quadratic factors of f(z), no intersection of the graph with the
-axis,

Brample: Graph f(z) = a* — Ta® — 422 + 782
= z(z + 3)(a? — 10z 4 26)
=a(z + 3)[= — 5 + 11



154 THEORY OF EQUATIONS

Corresponding to the linear factors z and z + 3, the graph intersects the
X-axis at x = 0 and z = — 3 respectively (Fig. 40). Corresponding to the
- quadratic factor 22 — 10z 4+ 26 there
is no intersection with the X-axis,
(In Fig. 40 one horizontal space rep-
\ resents one unit, while one vertical
/ \ / space represents twenty units.)

/D) a

/ EXERCISES

L X Plot the graph of each oﬂ}he fol-
lowing: e\ N

| ] 1. f@) = (z — 1)((m}g'2)(z —3).

/ 2. /@) = @ - 2

)4 8. (o) =€ 1%z + 2).

4, f(z) R\ & - D+ 2)(=+5).

5. @ (@ ~ D@ — 2~

Fic. 40 &) = oz — 3)5.
Separate the following polynomials inte real linear and quadratic factors
and plot the graphs. a3
Toa— 1L 8.2+ 188 9 -1 10. #* — 1.

11.x4+4x3+3x2—4:c-—4:"

12. Show that an equatioft f(xi = 0 of odd degree and with real coefficients
has an odd number of r?a.l\xoots.
3

117. Transformation of an equation multiplying each root by
a constant. 'The solution of an equation f(z) = 0 is often faci-
itated by txdnsforming it into an equation whose roots are equal
to those ef\the original equation times a constant. If we make

~C
z = % Or y = ma) in f(z) = 0, we obtain an equation in y whose

100ts' are m times those of f(z) = 0. In particular, if m = — 1,

(e make z = — yin f(z) = 0, and obtain f(— y) = 0O whose rools
N/ are equal in absolute value but opposite in sign to those of f(z) = 0.

These transformations can be performed rapidly by means 0

the following rules:

1. To. obtain an equation each of whose roots is m times @ cor

responding root of f(z) = 0: mulltiply the successive coeffictents be

gu;mngi with that of z»—1 by m, m?, m2, - -, respectively and reploct
x by y.

g
y
In carrying out this rule an; missing power of z should be Bupphed

N
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For example, to find the equation each of whose roots is double
the roots of the equation z* — 42° 4 322 + 1 = 0, we makem = 2,
and obtain

Y~ 2045 + 2EP) + 20 y) +2 = 0,
¥t — 88 + 12 + 16 = 0.
)

To establish this rule, substitute z = s in

f@) = ax” + e + @™ + -+ apaz + a, = 0. (1)

oA

The result of this substitution is A\
2 n 'y— n—1 -?_/— n—2 . l :;,} N

%(m) +a (m) + “2<m> TR a,._1<m> + oY, @)

N
or awy™ + mawy ™ + miagy" 2+ -+ - 4 mla,y +"‘7g\z”a,, =0, 3)
www.dhraulibrar

after multiplying by the constant m». The ru}&i§ thus established.

2. To obtain an equation each of whose .rtqus s equal in absolute
value to a root of f(z) = 0, but opposite gnsign: change the signs of
the odd degree terms in f(zx) = 0 and zeplice = by y.

For example, the roots of the‘qqiiaition
2 — 228 — 139+ 14z + 24 = 0
are 2,4, — 1, — 3, anc{. it.lg equation with roots — 2, — 4, 1, 3 is
yt+ Pp = 13y? — 14y + 24 = 0.

The rule follov(s At once from rule 1, by making m = — 1.
PRI EXERCISES

Obtain eduitions in y whose roots are equal to the roots of the following
eqUation’?s,\multiplied by the number opposite.
Ao —p—1=0. (5) 3. #-102-32-2=0. (-1
— 9.2 = 0. -2
N2 s _T_ 8 o ®) 4, 3 — 32+ 10=0 (-2

Obtain equations in y whose roots are equal to the roots of the follo.wing
“Quations multiplied by the smallest number which will make all the coefficients
ntegers and that of the highest power unity.

. 2 8
5-x’—2x2+%x—10=o. 8.2 -5 —¢g=0
6o g Z_8_ 9. 25 -3 +50+83=0.
6 36 10. 52° 46 = 0.

T3 44 =,



156 THEORY OF EQUATIONS

11. 10823 — 5422 4 45z — 13 = 0. (See exercise 2, Art. 121.)
12, 1203 — 422 — 32+ 6 = 0.

13. Obtain equations in y whose roots are equal in absolute value but
opposite in sign to the roots of equations given in exercises 1-4.

118. Descartes’s rule of signs. In a polynomial arranged in
descending powers of z, if two successive terms differ in sign
there is said to be a variation in sign. For example, N

o — 425 4 32 + 4o — 5 O

N\
has three variations of sign as is shown more clearly, by writing
down the signs + — + + —. Multiply this jelynhomial by
(z — 1). There results ""\&'

o — Bt 4 728 4 22 — 9z N

with four variations of sign. This last, op’p?yhomial has one more
positive zero (see Art. 114) than the ﬁrs}ﬁ If increasing the num-
ber of positive zeros of a polynomjallafways inereases the number
of variations in sign by at least,. bgie, then the number of positive
roots is never greater than the} number of variations of sign.

TaEOREM. The number 0f positive roots of an equation f(x) =90
does not exceed the numbex of variations of sign of f(z), nor does the
number of negative ¥ools exceed the number of variations of sign of
f(= o). \

This is Degeartes’s rule of signs.

The part fyv\hich relates to positive roots will be established by
showing.that whenever a positive root r is introduced into an
equat@n,' there is added at least one variation of sign. Leb
f(x)="0 be an equation of degree m. It is only necessary to show

o that (z — r)f(z) has at least one more variation of sign then f (@).
) Group the terms of f(z) between consecutive variations of sign i
brackets. In general, for a function of degree m, we have

J@) = [ba™ + byzmt + ... + bam7]
= (oo™ 1 4 bppgrmr—2 4 ... 4 bz ]
+ [bgpzm—et 4 ...]

=+ [bm—ﬁ;xv + bm—v+1xv_1 + .. 4 bm ,

- where bo, by, by, -+ -, by, are positive.
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Multiplying this function first by z, then by — r, and adding,
we obtain
(& — nf@) = [boz™ + (by — br)zm & -]

~ [(bpr + rhp)T™P & - - ]
+ [(bgra + rd)rm2 £ --.]

+ I:(bm—-v + Tbm_v._l)x”‘*‘l + .. ]
F rbm.

O\
O

It will be noticed that the coefficients of the first terml in the
several brackets, that is, by, (bpt1 + 7by), (byya + rbq),'j‘? ., are all
positive. Hence, the signs between the brackets\remain un-
changed. The signs within the brackets are uii¢ertain, but l& \is
ever they may occur there is at least one vatiation between the
first term of one bracket and the first terfa ‘of the next bracket.
Heuce, as far as the terms in the brackgts\are concerned the num-
ber of variations remains the same or I§ increased. But there is
added the variation caused by thelterm ¥ b, whose sign differs
from the sign of the last bracket: Therefore, there is at least one
more variation in (z — 7)f(z) than in f(z).

The part of Descartes’s \wule which relates to negative roots
follows from the fact ghab the roots of f(— z) = 0 are equal in
absolute value but Qp}osite in sign to the roots of f{z) = 0.

P\ EXERCISES

Without sp&'i}g, find the maximum number of positive and of negative
Toots, and Anyother information about the nature of the roots by the use of
Descarteg‘s ule of signs and other theorems.

Lalif5e — 7 =0,

o

\E;olution: There is one variation in sign, hence, there is not more than
OR€ positive root. f(— 2) = — 23 — 5z — 7 with no variation in sign, hence,
there are no negative roots. Since there are three roots of the equation,
tWo are imaginary and one positive.

2. 32 + 22+ 2 = 0. Hint: Only even powers of z occur.

2842 44 =0, 8. #+1=0..
L5242 2=, 9. 28+ 322+ 1=0.
5. 325 — 222 _ 5=, 10. 2 + 42* + = = 0.
6. 224 322 41 =0, 11, z» — 1 = 0 (n odd).
T30 — 82— 5 = 0. 12. 2* — 1 = 0 (n even).

aulibrar
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13. Given that the roots of 528 — 322 — 4x + 11 = O are all real, deter
mine the signs of the roots.

14. Show that the equation 7% — 222 — 2x + 4 = 0 has at least two
imaginary roots.

15. Show that the equation z® 4+ 52® + 42 — 10 = 0 has six and only six
imaginary roots.

The roots of the following equations being all real, determine their signs.

16. 2¢ — 1022 + 5 = 0. 19. 28 — 622 + 11z — 6 = 0. (O

17. 248 — 32 — 172 4+ 30 = 0. 20. 25 4 224 — 42? +x + %\3\22:3.

18, xt — 828 + 1727 + 2z = 24, 21, z¢ — 5822 4 441 = O\, -

119. Useful upper and lower bounds for roots. Jirithe present
chapter, we are concerned with the graph of f(z) ‘ehiefly through-
out an interval on z that contains the real roet§of f(z) = 0. To
save unnecessary labor in plotting, it is desirable to know upper
and lower bounds of such an interval. xj\\’

If no real root of f(z) = 0 is greater-than b, nor less than by, the
number b is said to be an upper boynd and the number b, alower
bound for real roots of f(z) = 0.4}«

A useful upper bound can '(?ftéh be found by means of the fol-

lowing =

THEOREM. If b is pa"sitivé or zero, and if each sum in the syn-
thetic division of f(a:){bg\(a; — b) s positive or zero, then no real rool
of f(z) = 0 s greatgr than b.

The theoremd.Js fairly obvious, since a greater number than b

would make\the sums still greater. For example, to show that 6
is greatgi‘ﬁ‘bhan any real root of

AN f@) = 2f - 52 + 322 — 420 — 50 = 0, @
. yz,éfélivide f(x) by (z — 6) by synthetic division,
O 1-5+3—42—150|6

6+6+ 54+ 72
1+1+9+12 422

and observe that a number greater than 6 would increase each sum.

To find a lower bound of the negative roots of f(x) = 0, itis only

necessary 't<.> find as above, by synthetic division, an upper bound
of the positive roots of f(— z) = 0.

For example, to find a lower bound for the roots of (1), divide

-y J(=2) = 2t + 528 + 342 + 422 — 50
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by (# ~ 1). We thus find 1 to be an upper bound for roots of
f(— x) = 0. Hence, — 1 is a lower bound for roots of (1).
- An upper or a lower bound obtained by the theorem of page
158 is not necessarily very close to a root.

For example, consider an upper bound for roots of

¢ — 92 4+ 23z — 15 = 0. (2)

By our theorem, 9 is an upper bound, but 5 is actually the
largest root of (2) as shown in exercise 1, Art. 121. ¢\

While we may thus cite some examples in which an uppes bound
obtained by our theorem is not very close to the largest root,

the bounds obtained are often close and very useful
\

120. Location theorem. If f(a) and f(b) hape cbntmﬁgral
equation f(x) = 0 has at least one real root b{(ween a and b.

Thus the points P; and P, (Fig. 41) whicly
correspond to z = @ and z = b arejonvop-
posite sides of the X-axis, and any\coitinu-
ous curve connecting P; and Bg erosses the
X-axis at least once between.g: and b. Since,
to every intersection of the" graph with the
X-axis there correspondsha real root of the
equation (Art. 11 4)\@3.éssume this theorem.

Fia. 41

EXERCISES

By the methoﬁ éf Art. 119, find integers that are upper and lower bounds
of the roots 6f\the equations.
1i\5x3+3z2—42x—-50—-0 .zt — 52— 8+ 1=0.
‘2.;}—2:1:3—{-3:02—5:5—{-1-—-0 6. 223 — 322+ 5 = 0.
82— 222 350 + 14 = 0. 7. 9t — 625 + 4z + 6 = 0.
4. 23 — 322 - 22+ 5 = 0. 8. 28 4 722 — 29z + 13 = 0.
9. By means of the location theorem show that the integer obtained in

each of the exercises 1-4 is the smallest integer that is an upper bound for
the roots.

Find the integral part of each real root of

10, 23 4 22— 25 — 1 = 0. 14 70— 1288+ 122 — 3 = 0.
1. ¥4 2.4 5=0, 16. 8z% — 3622 + 46z — 15 = 0.
12. 28 — 22 4+ 5 = 0. 16, 2* — 322 — 4z + 11 = 0.

B r#+2—5=0, 17. 22 =22 — 5 = 0.



160 THEORY OF EQUATIONS
121. Theorem concerning rational roots. If an equation
flx) = a@™ + @zt + w4 o + @z +a =0 (1)
with integral coefficients, has a rational root %, where % 18 1n ts lowest

terms, then b <s a factor of a. and c is a factor of ao.

Since % is in its lowest terms, it is implied that b and ¢ are in{'\

. . b
tegers with no common factors except 1 and — 1. Slnce‘;\ls\a

1

', root of (1), we have G\

A b bl b N )

d wotagta 5+ + an—l q» =0 (@
Multiply (2) by ¢*. This gives Y,

b + e a4 a»,.&ﬁfc"‘l faer=0. 3

i Subtract a.c® from each side of (3), and factor b from the re-
1 mainder in the left side. This glv‘es

b(agh™ + arb™%c + abm-%ed: ot g = — anen. @

‘ Since the left side of (4)\i$'an integer with b as a factor, its right
4 side, — anc”, must hate)b as a factor. Since b has no common
| factor with ¢, it muét\be a factor of q,.

Next, transpose all the terms of (3) except agb”. This gives

ab” = — C(a1b" ot abve 4 -+ guber? + a0, ()

i

Sine th% Tight side of (5) is an integer with a factor ¢, the left
| side mﬁst contain a factor ¢. Since ¢ has no factor in common
w1th b it must be a factor of a,.

Hence, if our original equation (1) with integral coefficients has
any rational roots, they may be found by trials that consist in
testing which, if any, of the set of fractions whose numerators are
factors of a, and whose denominators are factors of a,, will satisfy
the equation (1).

If the coefficient a, of the highest power of z in a rational integral
equation is unity, the equation is often written in the form

T+ P+ pnt - 4 pag 4 pa = 0,
and is said to be expressed in the p-form.
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CoROLLARY. Any rational root of an equation in the p-form
with integral coefficients is an integer and an exact divisor of p,,.

This important corollary follows at once from the theorem,
since ¢ = 1 or — 1 when it is a factor of a, = 1, and thus IE) must

be an integer.

To obtain the rational roots of an equation in the p-form with\
integral coefficients, it is only necessary to test whether the intggers

which are the exact divisors of p. satisfy the equation.* (\)
Y

EXERCISES A\

"
Find the rational roots by trial. If in the process of finding)rational roots,
the depressed equation is a quadratic, find all the roqts}wixether they are
rational or not. " www.dbraulibrary
1, 28 — 922 4+ 23z — 15 = 0. ..\\.’
Solution: By Descartes’s rule of signs, this a(fqzi‘tion has no negative roots.
Hence, we need try only 1, 8, 5, and 15. By synthetic division,
1-9+23%15]1
+ 1 —<8sF 15
1 —8&3I5+ 0
The depressed equation is z? — 8% 15 = (z — 5)(z — 8) = 0. Hence, 1, 3,
and 5 are the roots. &
2. 108x3 — 5442 -+ 453:3::\13 = 0.

Solution: In the p-fo\r}n this equation is ‘

1 5 13
o - S = 1
P I L T LA T w
Transform (@into an equation whose roots are six times those of (1). This
gives O\Y
\\“ #* — 3% + 15z — 26 = 0. %)

The jr;i.tional roots of (2) divided by 6 give the rational roots of (1). By
Déseartes’s rule, (2) has no negative roots. Hence, we need try only I, 2,

<13f 26. Depressing the equation,

1-38+15—261
_+1l- 2413 |
1—2+ 13- 13 |

1—3+15—-26(2
42— 2+26
- T-TT15+ 0
* If p, is a number with many factors, this method is likely to become laborious.
Similarly, if a0 or a,, or both of them have a large number of factors, the method
Suggested directly by the theorem is likely to be laborious.

Hence, 1 is not a root.
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V51

V5l
2 '

2

The depressed equation 2? — z+ 13 = 0 has roots % + and % -

Hence, 2 is the only rational root of (2) and % is the only rational root of (1).
3. 2094 302 — 22 — 3 =0, Q)
Solution: By the theorem, Art. 121, if a rational number % is a root,

the values of b are limited to :l: 1 and = 3; and the values of ¢ are limited to

+1and & 2. The possible rational numbers we can form for trial roots ares

+1, :t:l, + 3, :t§-

2 2 \
2R A
By synthetic division of the left side of (1) by (z — 1), we write s \"
2+3-2-3[1
2 5 3 o 3
. 25 3 0 ' R4
Hence, 1 is a root, and the depressed 2z* + 5z 48 =0 gives — 1, and
- g for the other roots. ::\\"
4.9 + 322 — 4z +1 = 0. 13. 195 422 — 3z + 1 = 0.
5.2t — 20— 32+ 80 —4=0. 14 2423 — 2622 + 9z — 1 = 0.
6.3 —22—1lz —4=0. J16. 228 422+ 22+ 1 =0
T. 28—203—2022—212—18=0. N 16, 24 + 22 ~ 27 + 6 = 0.
8. 2t — 1522 + 10z + 24 =0.™  17. 42* — 822 + 5z — 1 = 0.
9.x3_4x2+2x_1{=...¢ 18. z* — 4522 + 40z + 84 = 0.
4 o 13 1
10, 2 + 302 = 4ot 19, 19, 24z* — 425 — 222 — 543 +3=0
11 32 + 82l s 2. 20. 4zf — 1222 — 275 + 19 = 0.
12, 25 — 3:;(4—’14—175 _ % -o. 21. 25— 8zt 15234202248 = 762.

A
) 1?.2;'%Pr2ximaﬁon's to an irrational root of f(x) = 0 by succes-
S}YL\‘:% .g.raphs. Thf’ simple geometrical fact that a root of the
~equation f(z) = 0 is a value of  at which the graph of y = f(*)

NJheets the X -axis, enables us to use the location theorem of Art. 120

to ﬁn.d closer and closer approximations to an irrational root by
selecting a and b (Art. 120) closer and closer together with the
root to be found between them.

While this pl.an.of approximation to a root is simple in principle,
the procedure is likely to be found rather laborious. The student

. L L. .

. Thxec;non is de51.gned especially for those who omit Horner's method. While

a) sligmlﬁ :‘a K}I,Eth()d is by no means a full substitute for Horner’s method, it is
pplicable to a broader class of equations as is shown in this article.
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may well depend much on his own ingenuity in estimating a root
from the graph. The plan can prob-
ably be made clearest by examples. Y

Ezample 1. Find a root of
234+ 3z — 20 = Q.

Solution: First examine the equation for
rational roots (Art. 121). We find the equa-
tion has none. Next, form a table of values
of the function y = f(z) = 2% 4 3z — 20, 7

z= —2, -1, 0, 1) 27 37"' o \:‘
y=—34, — 24, — 20, — 16, — 6, 16, - --

and plot the function. The first figure of the
root is 2. Moreover, if we assume that the N
graph is approximately a straight line between .
the points (2, — 6) and (3, 16) we estimate N\ /
from the graph the approximate value 2.3 for ¢ 0 / X
the first two figures of the desired root. Testag™
ing this value we find O /
f(2.3) = — 933, R\
f(2.4) = 1.024. N
Thus the root lies between 2.3‘?ﬁd 2.4 by
Art. 120. By a repetition of, this process,
[plotting the points (2.3, — {988), (2.4, 1.024)
on an enlarged scale tenfold that used ori-
ginally] we infer that\t\le root lies between
2.34 and 2.35. Thisjudgment may be based Tig. 42
on the fact that f(2.3) is a little nearer 0 than
{S)to expect the Toot to be about halfway between 2.3 and 2.4

f(2.4), leading\
and nearer 2.3» By actual computation * we find

I e o N

r
i o MO

P
4
il

wwy.dbaullifrar;

"N\
\\V £(2.34) = — .167096,
o\ £(2.35) = + .027875.
:thSe figures suggest that the root is near 2.348. As
\ 92 £(2.348) = — .011231808,
and f(2.349) = + .008314559,
it is clear that the root to four figures is 2.348, but the exact value of the
Toot is probably a little nearer to 2.349 than to 2.348. Thus, 2.349 — may
be given as an approximation to the root.

It may be noted that the above method is likely to involve
laborious arithmetical computations. On this account, some one
\‘

* These and later computations are greatly facilitated by having at hand a
table of cubes
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of several other methods of approximating to the numerieal roots
of an equation may be preferable. One of these methods applicable
to the rational integral equation is called Horner’s method. This
method is developed in Art. 124. However, any one of the
methods of finding a close approximation to the numerical roots of
equations is apt to be tedious. The method of this section has one
advantage over Horner’s method in that it is applicable to an
equation f(z) = 0 when f(z) is not a rational integral algebraicy
function as may be shown by the following:

N
Ezample 2. Find two real positive roots of ¢ ( \“’\
1+@E@—-2%— @+ 6)% = 0 between 1 and 5. ',,}.‘ by
Form a table of valuesof y = f(z) = 1 4 (z — N — (z + @)%\\ ’
s =2, 3, 4, - N
y =0, — .08008, .25978, ---.\
We note that # = 2 is a rational root, and that a,fgot lies between 3 and 4.
Since f(8) = — .08008 is less than one-third as Ile below 0 as f(4) = .25978

is above 0, we estimate 3.2 as the first two figurey of the root although it is by
no means sure that the first two figures are not"3.3.
To test this estimate, we find &N
£(3.2) = $.600066,
£(3.3) =+ .0372317.

From the nearness of f(3.2) b 0, we infer that z = 3.2 is a close approxima-
tion to the root, the exact{Topt being slightly less than 3.2.

N
The method of; tl.k section may well be called the method of
successively enl\arged scales.

R ~ EXERCISES

N\
1. Fi\ni\t’hree significant figures of the root of z3 — 9z + 3 = 0 between
2 and f.i’by the method of successively enlarged scales.
. ¢25'Find three significant figures of a root of 28 + 4z — 7 = 0.
33. Find a root of 2z° + 322 — 42 — 10 = 0, correct to two decimal places.
4. The equation 1+ 2Vz —1 — 2V 4+ 5 = 0 has a root between 1
and 5. Find the first three significant figures of the root.

6. Find a rpot of (7a* + 42} + [102(2x — 1)J4 — 28 = 0, between 4
and 5 correct to two decimal places.

123. Transformation to diminish the roots. To obtain an equd-
tion each of whose roots is less by h than a corresponding Toot of 6

givgn equation f(z) = 0: divide f(x) by (z — 1) and indicate the Té
mainder by R.. Divide the quotient by (z — h), and indicate the
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remainder by R.—. Continue this process to n divisions. The last
quotient, aq, and the remainders, By, Ry, ---, R, are the coefficients
of the transformed equation. The new equation is then,

ay" + By + Ry + -+ Royy + R, = 0.

The division should be performed by the method of synthetic
division. , A
For example, find the equation each of whose roots is less by 2

than the roots of the equation O\
2~ 4a? — 3242 = 0. O
The work is as follows: AN
1-4-3+ 2|2 A\
+2—4-14 v www.dbraulibrar:
I=2-7-12 B = —.)2)
+2 0 L&
1+4+0-7 Ry 7,
R
1 + 2 ":.' Rl = 2,
o8 g =1

The required equation is ~3*
P~ Ty — 12 = 0.
+8J . .
To establish the\(ulé; substitute z = y + A in
@GR iz + -+ + @uaz + an = 0. 1
.. </ ..
This gives ,th:equatmn iny
GUER + ey + B+ @G E D) e =0 (@)

WhQSf: }oots are less by A than those of (1). Expanding the bi-
Ig&tpiél powers and arranging in powers of y, we may present the
<\§6Shlt in the form

ay® + At + Agym 2+ - + Ay + A = 0. 3)
Ifin (3), we make y = z — h, we obtain

%@ — h)" + Ai(z — B) + Aal@ — B)"2 A+ -
1 ot Anals — B) + An = 0. (4)

which is the same as equation (1) arranged in powers of & = h.
From the form of equation (4), it follows that A, is the remamder
When f(z) is divided by z — k; Aa is the remainder when the
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quotient of the last-named division is divided by =z — h; con-
tinuing this process to n divisions, A1 is the last remainder, and &,
is the last quotient. That is,

A, = R,
An—l = Rﬂ—l’
A1 = Rl,
which establishes the rule. L\
AN
EXERCISES g

Obtain equations in y whose roots are equal to the roots of «'tile “following
equations diminished by the number opposite. ~.'\ &

1. f(x) =22t — 322+ 4z — 5 =0. 2

Solution: We apply synthetic division to divide f{ Y (z — 2) to get the
coefficients of the equation in y as explained in Art\12 . Thus, we have
24+ 0— 34+ 4-— 5L€._>.t,5
4+ 4+ 84104287

Y 4+ 5+ 14423 Ri=23
+ 4416+ 420

2+ 8+ 214056 R; = 56,
+ 4124
I+ 12445 R, = 45,
4 &)
2&% B, = 16,
a = 2.
Hence, 2y* + 162° }I—""iS:v2 + 56z + 23 = 0 is the required equation.
%@ - TERT =0, ®
8. 23 X\27z — 36 =0, @
4,55 bot + 7428 + 7.920° — 17.872z — 0.70232 = 0, 12
822 + 1623 + 4502 + 56z + 23 = 0, (-2
O3
Qb ara-wtizo, @
7. 28 + 2022 + 131z + 280 = 0, (=9
8. 73+ 6a2 + 9z — 8 = 0, (-2
9, 2 + 522 — 3 = 0, 0.7

10. The roots of the equation 2% — 2x% — 1322 4 14x 4 24 = 0 are 2, 4,

— 1, — 3. By the method of Art. 123, obtain an equation in y with roots
0,2 —3, —5.

124. Irrational roots. Horner’s method. The irrational roots
of a numerical equation can be obtained to any desired number of
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decimal places by a method of approximation called Horner's
method. The method is based mainly on successive diminutions
of the roots of the equations to be solved (Art. 123).
It ecan be best explained by first applying it to an
example. In case an equation has some rational
roots, it should always be depressed by removing
such roots before considering irrational roots.

Q"
Ezample: Find the real roots of A
ot — 203 4+ 422 — 15z + 14 = 0. (1) AT 2
ol i
1. Test for rational roots as in Art. 121. It re- &
sults that 2 is the only rational root. \:
1-2+4—-15+14|2 Q ]
+24+04+ 8 —14 O wiy dhraulibrar
1+04+4—- 74 0 4O
Co S,
The depressed equation is A/ /
x3+4x—7—0,"" 2)

F1a. 43
2. Test for the interval thh contains the real

roots. From Descartes’s rule, ‘equation (2) has not more than one
positive root, and it ha§“mo negative root. Furthermore, 2 is
greater than any rooty (Art. 119).

3. Plot x® + 4z \\7fromx =0tozx = 2.
The graph (Elg“ 43) shows that 1 is the first figure of the root.

4. Transfofhy to diminish roots by 1; or graphically, change the
origin to i:b;e\pomt marked 1. The numerical work is as follows:

QA 14+0+4 —7]1
N +14+1 +5
~O 1+1+5]-
\V +1+2
14+ 2|47
1
1+3
The first transformed equation is then
x13 + 31312 =+ 7:131 —-2=0 (3)

This equation has a root between 0 and 1, since (2) has a root be-
tween 1 and 2. By evaluating f(z1) = 22 + 32:2 + 72 — 2 for
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successive tenths (0.0, 0.1, 0.2, - - -, 0.9), we find that this function
is negative when z; = 0.2 and positive when z, = 0.3. H_ence, (3)
has a root between 0.2 and 0.3. An approximation to this root is
given by neglecting the second and third degree terms in (3) and

solving » . 9 -0 '
Ty — = V.

The root of this equation between 0 and 1is z, = 0.2 ---. It is\
important to observe from the graph of f(z) that the sign of ‘the
known term in each transformed equation is to be the same ag “that
of the original equation after the rational roots have bgen-re-
moved. Ny
Transforming (3) into an equation whose roots gz less by 0.2,
we have RS
13 7 -2 [0.2.8)
02 0.64 1.528
1 32 764] — 047207

0.2 0.68 »
1 34[832 O
0.2 o
136
or o + 3.62,2 318.32z, — 0.472 = 0 @

as the second transfornded equation. The root of equation (4)
which we seek lies, between 0 and 0.1. Neglecting powers of
higher than the ﬁ;'st\, 1t appears from the equation

@) 832m — 0472 = 0
that z; lies k\étWeen 0.05 and 0.06. That the root is in this interval

may he¢tested by evaluating .8 + 3.62.2 + 8.32z, — 0.472 for
72 = §:05 and 0.06.

Fransforming (4) by synthetic division into an equation whose
Joots are less by 0.05, we obtain

N zs* + 3.7525 + 8.6875z5 — 0.046875 = 0. ®)
Neglecting powers of z; higher than the first, it appears from the
t'
equation 8.68751; — 0.046875 = 0

that 23 lies between 0.005 and 0.006.

Transforming (5) by synthetic division into an equation whose
roots are less by 0.005, we have

x4 + 3.76504 + 8725075z, — 0.003343625 = 0. (O



IRRATIONAL ROOTS. HORNER'S METHOD 169

The root of this equation between 0 and 0.001 can be obtained at
least as far as the first figure by neglecting powers of z; above the

first. This gives
x4 = 0.0003+,

Transforming (6) into an equation whose roots are less by 0.0003,
we obtain

258 + 3.7659252 + 8.72733427x5 — 0.000725763623 = 0. Q

The root of this equation between 0 and 0.0001 can be obtdined
at least so far as the first significant figure by neglectmg powers
of z; above the first. This gives N

x5 = 0.00008*. "

Taking the sum of successive diminutions.of‘the roots (?[f)r(azlzhbrar
we obtain as the approximate value of the root, sought
9\l
z = 1.25538+. { ©

The above computation is compagtly arranged on page 170.
The process can evidently be confcinhed to find the root to any re-
quired number of decimal places:y -

If a root of an equation igtknown to be small, one important
point to note is that such gnroot can, in general, be well estimated
by dividing the known,tgrm, with its sign changed, by the coeffi-
cient of the first defgfed*term. The coefficient of the first degree
term is, for this regson, sometimes called the trial divisor in ob-
talmng approxififate roots. A still better estimate of a root can,
in general, b.Q obtained by dropping terms of degree higher than
the secongdyand solving the quadratic.

Whenali equation has more than one irrational root, each is
treated ‘separately as we have treated the single irrational root in

_thisekample.
\ T two roots of an equation f(z) = 0 are nearly equal, their sepa-
ration may become laborious, but the separation may be accom-
plished by assigning values to z sufficiently near each other in
blotting the graph of f(x). For example,

28 — 242? + 442 — 23 = 0,
has two roots between 2 and 3. By assigning successively the
values z = 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, in plotting
the graph we ﬁnd that one of these roots is between 2.2 and 2.3,
while the other is between 2.8 and 2.9.
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The following is a compact arrangement of the solution of the
example of pages 167-9. The heavy type indicates the successive
transformed equations.

10 4 —7 |[L ’
1 1 5
11 5] —2
1 2
1 2 7
N
1 2N
1 3 7T -2 (0.2 A\
0.2 0.64  1.528 W
1 32 7.64] — 0.472 N
0.2 0.68 K7,
1 34 8.32 ~N
0.2 \
1 36 832  — 0472 [0.05 .
0.05 0.1825  0.425125 AN
1 365 8.5025| — 0.046875 . ™
0.05 0.1850 P\
1 370 8.6875 W >
0.05 \
1 37 8.6875  — 0,046875 [ 0.005
0.005 0.018775 _+0,043531375
1 3755 8.706275, —0.003343625
0.005.  0.01880"*
1 3760 8.7250%
0.005 \;
1 3766 N8.T260756  — 0.003343625 | 0.0003
0.0003 9 0.00112959 .002617861377
1 3.7658% 8.72620459] — 0.000725763623
0.0003"  0.00112068 '
1, (37656 872733427
010003
o1\ 3.7659 872733427 — 0.000725763623 | 0.00008
N 0.00008 0.0003012784  0.000698210843872

\’”\} “ 1 376598  8.7276355484 — 0.000027552779128

125. Negative roots. The negative roots of f(r) = 0 are ‘?b‘
tained by finding the positive roots of f(= ) = 0, and changng
their signs. It is therefore sufficient to discuss the method of ob-
taining positive roots.

126. Summary. In solving a numerical equation f(z) = 0 for

all its real roots, the following procedure may be found helpful it
systematizing the work:
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1. Test for rational roots; and if any exist, depress the equation
by removing the corresponding factors.

2. Determine an interval which contains the positive irrational
roots (Art. 119).

3. Plot the depressed polynomial to locate a root between consecu-
tie integers. The smaller integer is the tntegral part of the root.

4. To approximate more closely to the root, apply either the methot
of successively enlarged graphs (Art. 122), or Horner's method
(Art. 124). If Horner's method is chosen, the following sw’ﬁ«ma'ry
of steps is likely to be helpful: fix the attention upon some, positive
root whose location s known to be between two consecuytzfve tniegers.
Obtain by synthetic division (Art. 123) an equatiomﬁ&h)se roots are
less than those of the given equation by the smaller of\(hese Yrg-4ndagesslibrar
The new equation has a root between 0 and 1. Locate this root between
two successive tenths; and decrease the root By the smaller of these
tenths. The equation thus obtained has, @ root between 0 and 0.1.
Locate this root between two successive Latndredths, and again decrease
the roots by the smaller of these hundrgdiths. Continue this process to
any required number of decimal plates.

Add together all the diminutsons of the roots to obtain the required
root. A
If more than one root ﬁ}ontaz’ned between two consecutive inlegers,
separate them by means of the location principle.

5. Treat negatiub Joots in the same manner as posttive roots after
changing f(z) B4nto f(— z) = 0.
.t\"

()Y EXERCISES AND PROBLEMS

Find,’,’g} Horner’s method, the prescribed root of each equation to two
decimal'places.
M¥-~}3 — 322 — 22 + 5 = 0, root between 1 and 2.

2 25— 32 — 2z + 5 = 0, root between 3 and 4.

3. 2t — 8% 4~ 1442 + 4z — 8 = 0, root between 5 and 6.

4 25 4+ 1224 4 5943 + 15022 + 201z — 207 = 0, root between 0 and 1.

Find, to two decimal places, the prescribed roots using either the method
of Successively enlarged graphs, or Horner’s method.

6. 325 — 1122 + 62+ 7 = 0, root between 2 and 3.

6. 2% 4 1022 + 8z — 120 = 0, root between 2 and 3.

T. 328 + 1422 4 13z — 2 = 0, root between 0 and 1.

8. 27 + 822 — 4z + 1 = 0, two roots between 0 and 1.
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9. z¢ 4 10z — 100 = 0, root between 2 and 3.
10. 23 — 9z — 5 = 0, root between — 3 and — 2.
11, 2¢ 4+ 10z — 100 = 0, root between — 4 and — 3.

Find the rational roots, and the value of each irrational real root to two
decimal places, by any method.

12. 28 — 100 = 0. 18, 2% — 1223 -+ 12z — 3 = 0.
13. 5 — 1000 = 0. 19. 32* + 11 = 22° + 2122 + 4z,
14, 83 — 1222 4+ 1 = 0. 20. 23 4+ 422 = 5z + 20. "N\
15. 28+ 422 + 4z + 3 = 0. 21 28 + 13 = 32 + 42, a
16 2t — 32 +3 = 0. 22. x3+3z2+4x+5='0{'\“.\
1. 28— 8z — 1 =0. 23. o + 30z = 420. |\
24, 2% + 6 = 32 + 22 N

25. A sphere of yéllow pine 1 foot in diameter ﬂoatin%i}i water sinks to
a depth z given by %% — 322 + 0.657 = 0. \

Find the depth to three significant figures. ,\\,‘
$
26. A sphere of ice 1 foot in diameter ﬂog’f@g in water sinks to a depth
z given by the equation 20 — 322 + 0.98°20
Find the depth to three significant figurés.."
27. A cork sphere 1 foot in diam:éjier floating in water sinks to a depth
z given by the equation 928 s 3;52 _+_ 0.24 = 0
If the sphere is 2 feet in dgame;tér, the immersed depth is given by
2a% — 622 + 1.92 = 0.
Find the depths to’%\m"signiﬁcant figures.

28. An open bog'is made of a rectangular piece of tin 10 inches by 20 inc‘hes
by cutting equal’sqtares from the corners and turning up the sides. Find
(to two decinfalyplaces) the side of a square cut out if the volume of the box
is 187 cubieﬁ?xfihes.

29. :Elece of property can be bought for $7550 cash or $8000, p&ya_ble
in fgu'l\equa.l annual instalments of $2000 each, the first instalment being
pa,ijd.at once, and the remaining instalments at the ends of 1, 2, and 3 years

o (What yearly rate of interest compounded annually gives the two offers equ
\ \present values?

30. The width of the strongest beam which can be cut from a log 12 inches

in diameter is given by the positive irrational root of the equation

2* — 144z + 665 = 0.
Find the width to three significant figures.

81. The speed in feet per second of a 1-inch manila rope transmittiné
4 horsepower, under a tension of 300 pounds on the tight side, is given by

the equati
quation #* — 192000 + 211200 = 0,
Find the velocity to three significant figures.
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32. The diameter of a water pipe whose length is 200 feet, and which is to
discharge 100 cubic feet per second under a head of 10 feet, is given by the
real root of the equation

25 — 38z — 101 = 0.

Find the diameter to three significant figures. (Merriman and Woodward,
Higher Mathematics, p. 13.)

33. The algebraic treatment of the trisection of an angle whose sine is a
involves the solution of the cubic equation ’

433 = 3 — q.

WA
The unknown, z, is the sine of one third the given angle. When a = 1\/ 2,
N

find z to three significant figures.

34. A vat in the form of a rectangular parallelopiped is 8 X I‘O >< 12 feet.
If the volume is increased 500 cubic feet by equal elongatw){sq)f the dimen-
sions, find elongations in feet to two decimal places.

85. In problem 34, if the volume is increased by e{ngatloné"pﬁr‘dpghmﬂrb}l‘brar)

to the dimensions, find each elongation. (N
36. From the American Report on Wholesale‘Rnces, Wages, and Trans-

portation, for 1891, the median wage is gwen in dollars by ;1- of a value of

z in the equation
5613 = ao + mz -Mzzz* + asz® + a4,
5

197
where a0 = 69722%%, & = — 657—3-,.0/2 = — 3342, @ = a8’ U= T 1sg
Find the median wage correct 16 wills.

127. Coefficients i f:e,t;ns of roots. Let ri, rs, ---, 7, be the
roots of oz p‘g('"l + pxr 4 -+ p, =0, (1)
Then, from Ar’q..\ﬂQ;

"+ pnt 7{’\:p£x““2 + 0+ pa

=@ —n@ - - @ =),

A O A S il M R s s sl L e
RS R S

\by actual multiplication of the binomial factors of the second

member.

Equating coefficients in (2) (Art. 112, Cor. I), we have
—p1=7‘1+7'2+ SRR o

Py = T2 + Tra + o0+ Tl
— py = rrars + < o0 F Taaln—iTy 3 (4)
(— 1) Pp = T2V *** Tn.
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That is, — pr
p. = sum of products of roots taken two at a time,
_

sum of the roots,

sum of products of roots taken three at a time,

i

(= D"pa
If certain relations among the roots are given, the expressions

(4) of the coefficients in terms of the roots may aid in solving the
equation.

product of the roots.

O\
Ezample 1. The roots of 23 — 622 + 11x — 6 = 0 are in A.P. ¢ Find them.
Solution: Bince the roots, ry, rs, rs are in A.P., we may sety "}’«‘

T1=b—d, Tz:b, T3=b+d, "Z’: (1)

where b — d is the first term and d the common differenEfe. in the A.P.

By (4), Art. 127, from (1)
Pr=—6=—(n+r+r) <3, @
and Ps=— 6= —rmrs = N> d)bdb + d). @
From (2) and (3), we obtain b = 2, 'd:;’ ;i: 1, and the roots are 1, 2, 3.
It is sometimes desirable to tra,nsfqhﬁ a given equation into an equation
in which the coefficient of the termyof degree next to the highest is zero.

Ezample 2. Transform 433‘;{5'3241:2 — 1z -~ 27 =0 into an equation in
which the second degree terms missing.
AN — 12712
\\""— 8 —32 66
4

A\ 16 —33] 39
N — 8 — 16
P\ 4 87—49
xo\’,,.‘ - 8
\M 4 0
S'o]ux(!m: By Art. 127, the sum of the roots is — 24 _ _ 6. In the re

TN . 4
(%Iu{’ed equation, the sum of the roots must be zero. Hence, the sum of the
s\\three roots of the given equation must be increased by 6. This will be 8¢

| \ s complished by increasing each of the three roots by 2. By the method of
Art. 123, we obtain in y the equation

4y — 49y +39 = 0.

EXERCISES

By -the use of equalities (4), Art. 127, write an equation with each of the
following sets of preseribed roots,
1. —-1,1,2 3. 1,3,5.
2. —2, —1,4.

4.—§, —14 V3 —1-V2
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For each of the following incomplete equations find the root that is not
given, and write the complete equation.

6. 23— 422+ ... =0, if 1 and 2 are roots.
6, 4% — 622 + - .- =0,if1and—%areroots.

7.2+ -+ +4=0,if 1,2, and — 1 are roots.

Transform each of the following equations into an equation with the next >

to the highest degree term missing. A
28D
8. 228 — 62+ 3z +1=0, 9. 22* — 162° + 252% + 3z — A=)
10. Given that — 1 + V2 is one root of 3z3 + 822 4+ z —“2. = 0, find
the remaining roots. )

11. Solve 2% — 222 — 4z 4+ 8 = 0, the sum of two of t"lgs'\r’s;éts being 4.

12. Solve 223 — 322 4+ 22 = 3, the sum of two of the rdobﬁ;beiné]:mamlibraq
13. The roots of 23 — 622 + 3z + 10 = 0 are lxn{&,P Find them.

14. Solve z8 — 82 + 5z + 50 = 0, two of the\j(():ots being equal.

15. The roots of 2 — 722 + ¢z — 8 =0 gm; #h G.P. Find them, and the
coefficient c. o\ ¢

~

128. Algebraic solution of egu&ﬁons. In Arts. 121-126, methods
are discussed by which we ‘ebtain approximately the real roots
of numerical equations. /We turn now to a brief consideration of
equations with literal ,c@e?ﬁ"lcients.

Solving such an e}}u\afion consists in obtaining an expression in
terms of the coefficients which satisfies the equation. In other
words, it condigs’ in finding a formula which gives the roots in
terms of the\bdefﬁcients. For example, the roots of the typical
quadratic{ )"~

s S
o\

ax2+bx +c= 07
AN N 4ac.

\aﬂ;e. 2a
The roots of an equation are functions of the coefficients, al.ld it
IS important to inquire into the character of these functxPns.
The solution is said to be an algebraic solution, if these functions
of the coefficients involve no operations, except a finite numbe.r of
additions, subtractions, multiplications, divisions, and extractions
of roots. -
The algebraic solution of an equation is often called the solution
by radicals.
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In Arts. 129, 130, the general cubic
ar® + @2 + o + a3 = 0,
and the general quartic
aprt + ax® + a2 + asx + ag = 0,

are solved by radicals.
The algebraic solution of the general fifth degree equation « {\

a2 + @izt + a® + agr® + g + a5 = 0 Ko

engaged the attention of mathematicians during the elgh}eenth
and the first quarter of the nineteenth century. Iu" 1826 Abel
proved that the typical fifth degree equation h{ ho algebralc
solution. Since that time a branch of mathemetics, known as the
theory of substitution groups, has been much developed ‘While a
treatment of substitution groups is beyond/#h& scope of this book,
it may be stated that, by means of th1s theory, it is shown that
no typical equation O

ax® + gzt 4+ - -;:—E“an_lx +a,=0

has an algebraic solution if nvéﬁéeveds 4; and necessary and suffi-

cient conditions that an equation has an algebraic solution are
established. w\

\J

129. The cubig ‘eau}tion. The general cubic equation is

O + 0 + 0+ ag = 0. 2
By making ¢ " T=y— 3%;_’ @
-0 viid . 0
equation'(1) is transformed into
N a 2a? a
O ao3+< __1> 20 a0 -
\\3 R Ul e 3q, t@=0

3agaz — a,? 2
or 8 4 2202 © G a’ Wby | 0z _ 3
y Sa y+27a3 3a2+a0_0’ @)

which has no term of the second degree.

Let 3H = 3%% — a’ @)
3(102 !
and G = 20° _ ao ) (5)

27(10 3a0 5-0
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Then (3) takes the form,

¥+ 3Hy + G = 0. ©
Now assume y =+ v%, i
and I = . ©
From (6), (7), and (8), —G=u+to ©)
Eliminating » from (8) and (9), we have o\
w4 Gu — H3 =0, )
and solving this quadratic in , we find for a solution, ' O
_cexvEr@wm N
From (8) and (11) we have 2 ” m\‘
. ibrar
v = — %_3 -G - \/G2\-{:4H3 www dbr(ai,[zl;

The double sign before the radical/nthe solution of the quad-
ratic in u is omitted because takmg the negative sign before the
radical would simply mterchan,g‘e “the values of u and ». Since

Y -—wu.’i _|_ 1)3
the three values of y are s
D H
“ N1
Yp= Ut —
L\Y v
O = wit -2, (13)
AW wus
@ wt — 2
N/ = - 1’
\, vs whud

whereh3 is any one of the three cube roots of u, and w is a com-
,{lék dube root of unity (Art. 102).
\ ’Exercise. Test the solution by substitution of these values of y in (6).

By means of (2) and (13), the roots of equation (1) are

% H a1
= U —_— = =7
e B4 3a
1 H 27}
T = wus — T bt g—‘} (14)
wus o
5 % H ai
= U3 — —5 —5—*

T =W T ot 300
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When the coefficients of the equation are real numbers, the
numerical character of the roots depends upon the number under
the radical sign in (11) and (12).

When G? + 4H? is negative, % is a complex number. In this
case, to obtain y from (7) would involve the extraction of the
cube root of complex numbers. As we have no general algebraic
rule for extracting such a cube root, the case in which G* + 4H*
is negative is called the irreducible case. These roots may, how®
ever, be obtained by a method involving trigonometry (seg.\ Art.
102). Even when G? + 4H* is positive, the solution presented
above is not, in general, so well adapted to obtaining real Yoots of
numerical equations as the methods of Arts. 121-126%

2

130. The quartic equation. The general quarti'c“:.\\
att + ax® + awx? + asx +:a\\:§ 0
may be written in the p-form (Art. 121}'?§ -
zt + pr® + par? -lj,pusz;”—'l— ps = 0. ey,
Adding (mz + b)? to both megn,ﬁér"é of (1), we have
2t + pux® + (o + m?)a? + (Ps :F:émb)x + pa+ b2 = (mz + b2 (2)
Assume the identity, , *“x\

) 2
x4+pxw3+(pz+m2)x?+(p3+2mb)x+p4+b2 = <x2+%lx+q> )

N\
Equating cge@iéients of like powers of z, we have
\M

QO .
~."§ D2+ m? = % + 2¢, @)

\M‘. :.\' . Ps + 2mb = nq, (5)
Pt b= @ (6)

Eliminating m and b from (4), (56), and (6), we obtain
® + 80 ~ 4p)(@* - p) = (g — o), @
or 8¢ — 4p.g* + (2pips — 8P)q + 4psps — pi2ps — pi? = 0. ®

This is a cubic in ¢. Since the general cubic is solved by radicals
In Art. 129, we may assume g value of ¢ known. When q is known;
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the values of m and b are obtained from (4) and (6). From (2)
and (3), we have

2 4 Pt : = 2

T+ g5r+q) = (mz+b), 9
which is equivalent to the two quadratic equations

N\
x2+%1x+q—mx—b=0, .
)
and :c2-|-%1x+q+mx+b=0. .‘\.\‘
N

The solutions of these two quadratics give the fo\u;iyroéts of (1).

W

EXERCISES .
www.dbraulibra
1. Solve 28 — 422 +4- 6z — 4 = 0 and verify the}eﬁults by substitution.
Solution: Here ap = 1, a1 = — 4, az = 6 a3§ — 4,
From (4) and (5), Art. 129, QO
20,.\ 2
G = —7, ~H ==z
0 + 6v3
From (11), Art. 129 y 10 +276
}\u% 1+ V3
=
From (14), Art. 129:§he roots of the given equation are
A 2,144 1—i

L >

Substltuth:E)r z shows that each of these numbers satisfies the equation to
be solve\i\. ;

2, Sblve @ — 628 4 1202 — 20z — 12 = 0. o))
"'So'lutzon Adding (mz + b)? to both members of this equation gives

N/ — 62° + (12 4 m)a? + @mb — 20)z + b2 — 12 = (mz + b)2.  (2)

Assume the identity
T~ 628 + (12 + m?)z? + (2mb — 20)z + b2 — 12= (22 — 3z + 2. (3)

Equating coefficients, we obtain 12 + m? = 9 4 2g, @
2mb — 20 = — 6, )
bt — 12 =g (6)

Eliminating m and b from these three relations, we have the cubic

B — 602 4+ 420 — 68 = 0. (7)



180 THEORY OF EQUATIONS

This cubic has a root ¢ = 2. From (4), (5), and (6), the corresponding
values of m?, b?, and mb are .

m? =1, b2 = 16, mb = 4. )
From (2), 3), and (8), (22— 3z + 2)? = (z + 4)% 9)
This equation is equivalent to the two quadratic equations
2—3z+2—(x+4) =0, (10) -
and ?—-8+2+z+4=0 ay >

The roots of -(10) are 2 + V6, and those of (11) are 1 =+ iV5. Thesé;}oul'
values satisfy the given quartic. \"5}
Solve the following equations by the methods of Arts. 129, 1 &

3. 28— 22+ 3 =0. 7x4+2x3+x2+§\=0

4, x4 + 23 — 22 = Tx + 6. 8:1:3—{-3:::—6(‘, 18.

B. 0% + 422 + 4w + 3 = 0. 9. 2% = o 4t 6.

6. 22% 4 1 = 5z 10. =t —’312’},\4-' 6z = 2.




CHAPTER XV

LOGARITHMS

131. Generalization of exponents. In Art. 34, a* is defineds,
when x is a positive integer. Thus, 45 =4-4.4.4.4, Alse
a meaning is obtained (Arts. 35-39) from the laws of exponentsfor
a® when z is any rational number. Thus, 8% is the squafe)of the
cube root of 8. But no meaning has been obtained fgr."a" when z
is an irrational number. For example, 42 is thus#ar undefined.
But approximations to V2 are given by the sequ@n\ce of rational

numbers www.dbraulibrar

1, 1.4, 1.41, 1.414, 1.4142.,{\'3.
If these successive decimal approximgvﬁipﬁé to V2 are used as
exponents, closer and closer approximations to 4¥2 are obtained.
If we write the sequence N
41, 41.4’ 41.4}):41.4i4’ 4rae

we can have as close an approximation to 4% as we please.*

In this chapter we sha{l assume that a* (a positive) has a mean-
ing when z is irratjonal) and that the laws of exponents may be
used for all real valties of the exponents, rational or irrational.

132, Deﬁni;iQﬁ "c;f a logarithm. If o = y(a> 0, a ;é 1),.then
T 18 said to e.the logarithm of y to the base a, and this is written
& = logy y\© ' '

Thi}’f\vé equations a® =y @

apd z = logay @
_are two ways of expressing the same thing, i.e., the exponent

applied to a to give y is equal to z.- The number a is called the
base of the system of logarithms.

We shall assume in what follows:

Corresponding to any two positive numbers y and a (a 7 1) there
exists one and only one real number x such that a* = y.
——

* If 2 is an irrational number and a x.rariable z takes on a sequence of ratiox.JaI
Values approaching x as a limit, it may be proved in more advanced mathematics
that a%(a > 0) has a limit equal to a*.

181
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This assumption is sometimes expressed by saying that any
positive number has one and only one logarithm, whatever positive
number is the base (unity excepted).

EXERCISES
1.log: 8 =7 logs27 =17 logwl =7 logaa =7 loge3 =7
2. Find z in the following:

log. 8 =3, logs2 ==z, log;z =5, log; 1000 =3, logwz = 5. O
3. Fill out the following table: . K¢ :\’
O

Base Number Logarithm Ao
49 2 o

3 = 'w:\a.

81 Y
01 Ko\

13 1 O

133. Derived properties of logqﬁfhms.

1. The logarithm of a prodtgqtéq‘uals the sum of the logarithms of
its factors. N

Let , loga"{t{‘; z and log, v = y, (1)
then, \'\‘a“’ =, av =y, (Definition of logarithm.)
and N w = ash, (Art. 34 and Art. 131)

Hence, X log,w =z + y,

that iS, "\‘i\ lOga uv = loga u+ loga v.
Si‘%M’ loga (uvw) = log, u + log, v + loge w,

andsgo‘on for any number of factors.

o\ 'kzample: logy 255 = logy 3 + logy 5 + loguo 17.

4

2 The lf)garithm of a quotient is equal to the logarithm of the
dividend minus the logarithm of the divisor.

As above, let  log, v = z and log, v = y,

then, @ =u a =y,
a’nd y— = g~V
> .
H U
ence, 10ga o= z -y,
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that is, log, z_{ = log, u — log, v

Ezample: logio o 625

133 = logio 625 — logy, 133.

3. The logarithm of w is equal o v multiplied by the logarithm
of u.

To prove this, let = = log, u or o* = w. (1)
Then, from (1), u' = ", ¢\ ’\
Hence, log, u¥ = vx = v log, u. . O @)

Ezample: log (257)%F = % logy 257. ’ “‘ :

Qe
. 1 . )
Making v = nand v = - respectively, we have\ | . . dbraulibrar

(@) Tke logarithm of the nth power of a Quykber 1s the logarithm of
the number multiplied by n. \S

(b) The logarithm of the real posmve ‘nth root of a number is the
logarithm of the number dzmded bg n.

EXERCISES

Express the logarithms o{’bhe following expressions in terms of the loga-
rithms of integers. + )

N/

V8
1. *lo N
g o6l
2N/ N
Solution: ,’\log —6— = log V8 — log 9% — log 63 (1 and 2, Art. 133.)
~E
,(\\w 41: log 8 — ¢ log 9 — g log 6. ‘ (3, Art. 133.)
™I 3 —\/7 64 . 52.
4\ \2 Iog 3. log m . loj -

Vo
Express the logarithms of the following in terms of the logarithms of
prime numbers.

5. 1o (25)3' 61 (ge-v6 T log Va3V, 9. log ?"
' (30)% N GVE 8. log 7! 3151

10. Prove log, 1 = 0 and log, @ = 1.

Given logi, 2 = 0.3010, logs 3 = 0.4771, loge 7 = 0.8451, (see table, pages
190, 191), find the logarithms of the following numbers to the base 10.
—_—

* When in a problem the same base is used throughout, it is customary not to
write the base.
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11, 21. 17. V3. 21. V252
12, 49. 18. V343, 22. V400
13. 63. 19, 25 23. /5000.
;:- 5‘/ 63. is 24. V3.
-0 . 20. 5 25. (2940)3.
16. 210. 05 S
26. V0.204.

. e . N

134. Common logarithms. While any positive number can be
used as the base of some system of logarithms, there ard two
systems in general use. These are the common or Briggs'§'system

.and the natural or Napierian system. In the common.sj.ysfem the

base is 10, while in the natural system the base is gpertain irra-
tional number e = 2.71828---. It may be stated\that the com-
mon system is adapted to numerical computition, while the
natural system is adapted to analytical work.*

In the following discussion of commeén~logarithms, log = is

3

written as an abbreviation of logy z. AW

Since, 100 = 1 10-1 = 0.1
10! = 10 &Y 10 =001
100 = 100 _ " 10~ = 0.001
10° = 1000 10~ = 0.0001
1t follows that . \\ R
log 1L\J=0 log0l = -1
l()\g:iﬂ' =1 log 001 = —2
(Jog 100 =2 log 0.001 = —3
~\log 1000 = 3 _

log 0.0001 — 4
o’ far as these powers of 10 are concerned, it may be observed
that the logarithm of the number becomes greater as the number

%ncreases. In accordance with this observation, we may assuiié
if a <z < b, that
@

log a < log z < log b.
log 100 < log 765 < log 1000,
2 <log 765 < 3.

For example,
or

. .
" The notation In z for log, z and log z for logy = is frequently used when bt
ds of logarithms appear in the same problem.
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When the logarithm of a number is not an integer, it may be
represented at least approximately by means of decimal fractions,
Thus, log 765 = 2.8837 correct to four decimal places.

The integral part of a logarithm is called the characteristic and
the decimal part is called the mantissa. In log 765, the charac-
teristic is 2 and the mantissa is 0.8837. For convenience in

constructing tables, it is desirable to select the mantissa as posiza,

tive even if the logarithm is a negative number. For example,
log + = — 0.3010; but since — 0.3010 = 9.6990 — 10, this‘may
be written log 3 = 9.6990 — 10 with a positive mantissa. {The fol-
lowing illustration shows the method of writing the c]gatgdteristic

and mantissa: AN
log 7185 = 3.8564 ¥

log 718.5 = 2.8564 \ }www.dbraulibrary

log 71.85 =~ 1.8564 )
log 7.185 = 0.8564 ('

log 0.7185 = 9.8584 ~ 10
log 0.07185 = 8,8564 — 10

135. Characteristic. With gyi":d'ecimal system of notation, the
characteristic in the case of ,1;}§{e base 10 is very easy to determine
by a simple rule. Hereindies the advantage of this base.

If y is a number Wh{iez}s has n digits in the integral part, then

XN 10 = y < 107, 1)
and by Art. 134;1), n — 1 = logy < n.
Hence, ,\lc;g y = n — 1 + (a positive fraction)
or \:“\.:’ log y = characteristic + mantissa.

H@H‘Cé, to find the characteristic of the common logarithm of a
nmi;’bé} which has an integral part, subtract 1 from the number of
_dufits in the integral part.

The logarithm of 0.1 is — 1; hence, from (1) Art. 134, the
logarithm of any number between 0.1 and 1 is some number be-
tween — 1 and 0; that is, minus one plus the mantissa. For
example,

log 0.7185 = — 1 4 0.8564 = 9.8564 — 10.
For a number between .01 and .1 the logarithm is minus two plus
the mantissa. For example,

log 0.07185 = — 2 + 0.8564 = 08.8564 — 10.
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This leads easily to the general rule for negative characteristies;

The characteristic of the common logarithm of any positive number
less than 1 is negative and numerically one greater than the number
of zeros immediately following the decimal point.

The result so obtained could manifestly also be obtained by the
following rule:

To find the characteristic of the common logarithm of a decimal
fraction, subtract from 9 the number of ciphers between the dgt:i'm?il
point and the first significant figure. From the number sq obiained
subtract 10. N

If two numbers contain the same sequence of ﬁg.uie’s, and there-
fore differ only in the position of the decirhah point, the one
number is the product of the other and an .ig.t.égral power of 10,
and hence, by Art. 133, the logarithms of (Xle numbers differ only

by an integer. Thus,
log 3722 = log 37.22 *F log 100
= log 3422 + 2.

Hence, the mantissa of the Eommon logarithm of a number is in-
dependent of the position g(the decimal point. In other words, the
common logarithms, of_ }wo numbers which contain the same
sequence of ﬁgures‘ r only in their characteristics (Art. 134).
Hence, tables of Jogarithms contain only the mantissas, and the
computer musb, firld the characteristics by the foregoing rules.

(N

136. Approximate numbers. Most of the numbers used in this
chaptep~are approximations. For example, when we read 10g
7.18§ 5"0.8564, it does not mean that log 7.185 is exactly 0.8564,
‘ ,b}n’g\that 0.8564 gives the value of log 7.185 as nearly as can be
done .Wif,h four figures. The approximate number 0.8564 would
be written in a four-place table for any number between the exact
numbers 0.85635 and 0.85645, and is ““correct to four significant
ﬁgures,” while log 7.185 = 0.85642677 is “correct to eight sig-
nificant figures.” (See footnote, page 68.)

137. Significant figures. In counting the number of significant
figures, we usually consider the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, but
un(.ie}' certain circumstances 0 may be significant. It is always
80 if it occurs between two other sienificant foures  For examplé
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in the following logarithms, the zeros are significant, 2.5011,
1.9009. On the other hand, the zeros in 0.00379 are not significant
but are used simply to locate the decimal point. Zeros at the end
of a number may or may not be significant. If we say that the
population of the United States is 130,000,000, the last zeros are
not significant for we do not know just what numbers should be

there, since we cannot count the population correct to a single,

person. Again, if measurements are taken to the nearest tenth
of an inch and the length of a desk is put down as 60.0 inches,
then both zeros are significant. O

The position of the decimal point has no influence O:nfthe num-
ber of significant figures, for example, the numbers 576.35, 57.635,
0.057635, considered as approximate numbeis arerall correct to

five significant figures. www.dbraulibrary

138. Rejecting figures. It is often neceéﬁ;fy to reject figures
at the end of an approximate numberss*This rejection of figures
is often called “rounding off”” the ndmber. For example, if we
are working with four-place data, the last two figures in the num-
ber 0.376741 are unnecessary ane we write simply 0.3767. How-
ever, if the first rejected figureds greater than 5 or 5 followed by
figures not all zeros, the last unrejected figure should be increased
by 1. Thus, it is cleap-that 0.7686 is a closer approximation to
0.768583 than is 0.7685" If the rejected figure is 5 or 5 followed
by zeros, it is oftén customary among computers to increase the
last unrejected L{u}ﬁber by 1 if it is an odd number, but to leave it
unchanged if. it is an even number. For example, 1.4865 becomes
1.486, but, '0:8\39350 becomes 0.8394 when these numbers are cut
down tobfdu'r significant figures. If this rule is followed in a long
piece, Q, computation, the errors tend to compensate one another.
"I‘\h'rs:.‘r'ule has been followed in working the problems in this book.

139. Computation with approximate numbers. The resglts'of
calculations based upon approximate numbers are ordinarily
approximate numbers. '

While it is beyond the scope of a college algebr% to go far into
the propagation of errors in computing with approximate numbers,
we shall give, without proof, two rules that are rather generally
adopted by computers and that are likely to put us on our guard
against retaining useless figures in computing with approximate
Numbers.

|
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Rule for addition. In the sum of a given set of numbers of which
at least one is an approzimate number, it is seldom useful to retain
more decimal places than are found in one of the approximate num-
bers with the least number of decimal places.

Thus, in adding

3.1416

6.28

2.412

7.9 A
19.7 L

in which 7.9 is an approximate number, we report the ‘s 19.7.
A similar rule holds with regard to subtraction. , \

Rule for multiplication and division. In a pro}fé}ct or quotient,
it is seldom useful to retain more significant fighwes than are found
in one of the given approximate numbers with>the least number of
signeficant figures. \

Thus, if 8.3 is an approximate nymbér, we write (8.3)(3.1416)
= 26, and report only two signif:lcarit' figures.

Although the above rules ordinarily give useful approximate
results, it will be shown in sprfré of the following exercises that the
last figure is not the nl(@t accurate that could be given.

- ne

Y b\ EXERCISES

1. Explain the difference between the approximate numbers 71.4, 71.40,

71.400 where the™2eros are to be considered as significant.

2. Distingtxf:s\}’t“between the numbers 7, 7.0, 7.00, 7.000, assuming each
digit a sigr{ﬁpant number, ’

3. Toohvelve significant figures = = 3.14159265359. Write 7 to eleven
to t,e\n, “to nine, - - - to two significant figures.

w\;‘i" The value 272 is often used for 7. To what number of significant figures

18 this value equivalent?

5. Add the following numbers which are to be considered as the results
of measurements: 31.5, 3.126, 25.4301, 0.438.

6. The product of the approximate numbers 3.17 and 7.98 may take o

any value between what two numbers? What is the product according t0 the
above rules?

7. The product of the three approximate numbers 0.37, 7.3, and 2.1 m8¥

!;a,ke on any value between what two numbers? What is the product accord-
Ing to our rules?
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8. Suppose in the fraction 6%) that the numerator is an exact number,

and the denominator is an approximate number, find the extreme values
which the fraction may represent. What is the quotient in decimal notation
according to our rules?

9. If both numerator and denominator of the fraction 07?,'8?3
numbers, find in decimal notation the extreme values which the fraction
may represent. What is the quotient according to our rules? Q"

10. There are 2.540005 centimeters in one inch. A board measures 14, 2 fect
in length measured to the nearest tenth of an inch. Express the length‘ in
meters. Between what two numbers does the result lie?

140. Use of tables. On pp. 190, 191, a “four-plazce” table of

logarithms is given. In this table, the mantlssas of the loga-
rithms of all integers from 1 to 999 are recorded, correct to four

are approximate

decimal places. ‘““Five-place,” “six-place,’Jand “seventplackbrar
tables are in common use, but this four-p}abe table W111 serve for
our present purposes. \

Methods by which such a table can e made will be discussed
after applying the logarithms found in the table to purposes of
arithmetical calculation. In order o use the tables we must know
how to take from the tables the logarithm of a given number,
and how to take from the tables the number which has a given
logarithm. \

141. To find froig\the table the logarithm of a given number.

Ezample 1. Find: the logarithm of 821.

Glance down® %he column headed N for the first two significant figures,
then at the t()p ‘6f the table for the third figure. In the row with 82 and the
column with ¥ is found 9143. '

Hene\log 821 = 2.9143.

Example 2. Find the logarithm of 68.42.
¢“This number has more than three significant figures, so that its logarithm
1§ Dot recorded in the table. It may, however, be obtained approximately
from logarithms recorded in the table by a process of interpolation. In this
process, it is assumed that to a small change in the number, there corre-
sponds a change in the logarithm which is proportional to the change in the
number. This assumption is called the principle of proportional parts. As
in example 1, we find that the mantissas for 6840 and 6850 are 8351 and 8357,
respectively. The difference between these two mantissas is 6. Since 6842
is two tenths of the interval from 6840 to 6850, by the principle of propor-

tional parts, we add to 8351,
02X 6 =1%

Hence, log 68.42 = 1.8352.

/"
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N| o 1 2 3 4 5 6 7 8 9
0000 0043 0086 0128 0170 | 0212 0253 0204 0334 0374
}? 0414 0453 0492 0531 0569 | 0607 0645 0682 0719 0735
12 | 0792 0828 0864 0899 093¢ | 0969 1004 1038 1072 1106
13 | 1130 1173 1206 1239 1271 | 1308 1335 1367 1399 1430
14 | 1461 1492 1523 1353 1584 | 1614 1644 1673 1703 1732
15 | 1761 1790 1818 1847 1875 | 1903 1931 1059 1987 2014 {
16 | 2041 2068 2005 2122 2148 | 2175 2201 2227 2253 2279
17 | 2304 2330 2355 2380 2405 | 2430 2455 2480 2504 2529
18 | 2553 2577 92601 2695 2648 | 2672 2695 2718 2742 { 2063
19 | 2788 2810 2833 2836 2878 | 2900 2923 2045 20672989
N
20 | 3010 3032 3054 3075 3096 | 3118 8139 3160 L3181 3201
3124 3 : 7
23 | 3617 3636 3655 3674 3692 | 3711 3729 ,3747 3766 3784
24 | 3802 3820 3838 3874 | 3802 3009\8927 3945 3962
25 | 3979 3997 4014 4031 4048 | 4065 4099 4116 4133
26 | 4150 4166 . 4183 4200 4216 4232\ 4965 4281 4298
27 | 4314 4330 4346 4362 4378 | 4893\ 4495 4440 4456
28 | 4472 487 4502 4518 4533 | 4548 4064 4579 4594 4609
29 | 4624 4639 4654 4660 4683 | 46098 4713 4728 4742 4757
30 | 4771 4786 4800 4814 4820| 4843 4857 4871 4886 4900
3l | 4914 4928 4942 4955 4969 | 4983 4997 5011 5024 5038
32 | 5051 5065 5079 5092WH105 | 5119 5132 5145 5159 5172
33 | 5185 5108 5211 5224 5237 | 5250 5263 5276 5289 5302
34 | 5315 5328 5340 5363 5366 | 5378 5391 5403 5416 5428
MY
35 | 541 5453 .Bgﬁ.‘ B478 5490 | 5502 514 5527 5339 B5SL
86 | 5563 5575 G387 5509 5611 | 5623 5635 5647  bE68 5670
87 | 5682 569%, 5705 5717 5729 | 5740 5732 5763 5775 BU86
38 | 5798 5800 ) 5821 5832 5843 | 5855 5866 5877 5888 B899
39 | 5011 5\922" 5933 594 BOS5 | 5966 5OTT 5988 5999 6010
40 | c0ZD\6031 6042 6053 6064 | 6075 6085 6096 6107 6117
41 | 81287 6138 6140 6160 6170 | 6180 6191 6201 6213 6222
12 \g§32 6243 6253 6263 6274 | 6284 6204 6304 6314 6320
43°\6335 6345 6355 6365 6375 | 6385 6395 6405 6415 6420
BEN 6435 644 6404 6464 6474 | 6484 6493 6503 6513 6522
\A45 | 6533 6542 6551 6561 65T | 6580 6590 6500 6609 6618
10| G238 6637 6046 6636 6663 | 6675 6684 6693 6702 6112
6721 6730 6730 6749 6758 | 6767 6776 6785 6794 6803
48 | 6812 6821 6830 6839 ¢ a4 6893
H 848 | 6857 6866 6875 68
9 | 6902 6911 6920 6928 6937 | 6046 6955 6964 6972 6981
50 1 699 6098 7007 7016 7024 7067
& 7033 7042 7050 7059
g% U6 084 7083 701 7110 | 7118 7126 7135 7143 7182
T168 7177 7185 7193 | 1202 7210 7218 7226 7230
53
TA3 11 7250 7267 7275 | 7284 7202 7300 7308 7316
54 | T34 7333 7340 738 7356 | 7364 7372 7380 7388 73%
L e ———
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N 0o 1 2 38 4 5 6 7 8 9
55 | 7404 7412 V419 7497 7435 | 7443 T451 7459 7466  T474
56 | 7482 T4 7497 7505 7513 | 7520 7528 7536 743 7551
57 | 7559 7566 To74 7582 7580 | THO7T 7604 7612 7619 7627
58 | 7634 1612 7649 T65T TGGL | T6T2 7679 7686 7604  TT01
59 | 7709 7716 7723 7731 7738 | M5 752 TI60 TI6T 1Ti4
"\
60 | 7782 7789 7T79% 7803 7810 | 7818 7825 7832 7830 7846
61 | 7853 7860 7808 7875 7882 | 7880 7396 7903 7910 7917
62 | 7924 7931 7938 7945 7952 | 7959 7966 79T 7980 7oRRN
63 | 7993 8000 8007 8014 8021 | 8028 8035 8041 8048 8055
64 | 8062 8069 8075 8082 8089 | 809 8102 8109 8116, 18192
65 | 8129 8136 8142 8149 8156 | 8162 8160 8176 8182 ¢ 8189
66 | 8195 8202 8209 8215 8222 | 8298 8235 §241.°8248 894
67 | 8261 8267 8274 8280 8287 | 8203 8299 8306.\ 8312 8319
68 | 8325 8331 8338 8344 8351 | 8357 8363 .830) 8376 8382
69 | 8388 8395 8401 8407 8414 | 8420 8426 8432 8439 &MFdulibrar
w\,/
70 | 8451 8457 8463 8470 8476 | 8482 gﬁs\ 8494 8500 8506
71 | 8513 8519 8525 8531 . 8537 | 8543 8540 8555 8561 8567
72 | 8573 8579 8585 8591 8597 | 86088609 8615 8621 8627
73 | 8633 8639 8645 8651 8657 | 8663) 8669 8675 8681 8686
74 | 8692 8698 8704 8TI0 8716 | 87227 8727 8733 8739 8145
75 | 8751 8756 8762 8768 STTAN| 8779 8785 8791 8797 8802
76 | 8308 8814 8820 8825 8831° | 8837 8842 8848 8854 8859
77 | 8865 8871 8876 8882 8887 | 8893 8899 8904 8010 8015
78 | 8921 8927 8932 8938, 8943 | 8949 8934 8960 8965 8971
79 | 8976 8982 8987 8@3 8098 | 9004 9009 9015 9020 9025
s\ J
80 | 9031 9036 9047 9053 | 9058 9063 9069 9074 9079
81 | 9085 9090. <90 9101 9106 | 9112 9117 9122 9128 9133
82 | 9138 9143 0149 9154 9159 | 9165 9170 - 9175 9180 9186
83 | 9191 9196799201 9206 9212 | 9217 9222 9227 9232 9238
84 | 9243 924879953 9258 9263 | 9260 9274 9279 9284 9289
I
85 | 920440299 9304 9309 9315 | 9320 9325 9330 9335 9340
86 | g ggj 9350 9355 9360 9365 | 9370 9375 9380 9385 9300
87 g% 0400 0405 9410 9415 | 9420 9425 430 9435 9440
88 (19443 9450 0455 O460 9465 | 9460 9474 9479 9484 9489
89 YNo401 9499 9504 9509 9513 | 9518 9523 9528 9533
PA
90 | 9540 oma7 ond2  onp7  OB62 | 9566 9571 9676 958l 058G
91 | 9500 o505 0600 0605 9609 | 9614 9619 9624 9628 9633
92 | 9638 0643 9647 9652 9657 | 9661 9666 9671 9675 9680
93 | 9685 9680 0604 0690 9703 | 9708 9713 9717 9722 9727
94 | 9731 9736 9741 9745 9750 | 9734 9759 9763 9768 973
OB | 9177 ors2 9186 9701 9795 | 9800 9805 9809 9814 9818
96 | 9823 9337 9832 0836 9841 | 9845 9850 9854 9859 9863
97 | 9868 9872 0877 0881 9886 | 9890 9894 9849 9903 9902
98 | 9912 9917 9921 9926 9930 | 9934 9939 9943 98 995
99 | 9956 9961 0065 0969 9974 | 9978 9983 9987 9991  99%6
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1492. To find from the table the number which corresponds toa
given logarithm.
Ezample 1. Find the number whose logarithm is 2.4675. The mantissa

4875 is not recorded in the table, but it lies between the two adjacent mantissas
4669 and 4683 of the table. The mantissa 4669 corresponds to the number

203 and 4683 corresponds to 294. The number 4675 is 1—(; of the interval from

4669 to 4683. By the principle of proportional parts, the number whog™\
mantissa is 4675 is 2030 4 % X 10 = 2934*.

O\
Hence, _ log 203.4 = 2.4675. O
Ezample 2. Find the number whose logarithm is 9.3025 — 0
From the table, ~ log 0.2000 = 9.3010 — 10 (‘¥

log 0.2010 = 9.3032 — 10
Difference = 0.0022 \

(9.3025 — 10) — (9.3010 — 10) = 0.0015. ,:1\\'
By the principle of proportional parts, the ‘fiumber is

0.2000 + ;—g X 0.0010 = 0.2007.

EXERCISES

Obtain, from the table, th'e’con'linon logarithms of the following:
1, 43. ,i”z\ 7. 5483.

2. 430, A\ 8. 1.247.

.17L N 9. 3241,

a1 N 10. 0.03752.

5. 0.0846 11, 444.4.

6. ’@sg‘ef‘ 12. 3.1416.

Obtain, by means of the table, the numbers whose common Jogarithms
ae-the following:

{‘; “13. 1.3118. 16. 8.9069 — 10. 19. 7.7727 — 10.
14. 2.3118. 17. 4.8203. 20. 1.6446.
16. 9.6191 — 10, 18. 3.5071. 21. 0.5946.

143. Computation by means of logarithms. The applicati?n
of logarithms to shorten calculations depends upon the Pmper,tles
of logarithms given in Art. 133. By means of logarithms laborio®
multiplications and divisions may be replaced by additions any

subtljactions; and involution and evolution may be replace
multiplication and division.
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EXAMPLES

1. Find the value of N = W%TXMSGYM to four significant figures,
log 6.320 = 0.8007
log 8.674 = 0.9382
log (6.320)(8.674) = 1.7389

log 2.851 = 0.4550 N
log N = 1.2839 A
N =19.23. AN,
~

In using logarithms, much time is saved and the liability of error is;dé‘c{eased
by making a so-called form for all the work before using the table at QlZ‘s

Thus, in Example 1, the “form?” is * ""\i."
log 6.320 = AS
log 8.674 = \ www.dbraulibrar
log (6.320)(8.674) = A
log 2.851 = N\
log N =¢° : v
A
DA IR Y areyrs
2. Make a form for evaluating N f-? '&%@
\ log 6.85 =
N\ log 8.542 =
&N\ log 65.27 =
O\ log (6.85)% =
\, log (8.542)% =
\“ log [(6.85)%(8.542)%;] =
s"\.:’ log (65.27)z =
,\\w' log N =
\ N =
- *i’T:h‘é logarithm of the reciprocal of z is called the cologarithm of = and is
%\l}%é‘n colog z. Since log 1 = 0,
colog z = logi = —logz.

In a series of operations involving multiplications and divisions, we have bot'h
additions and subtractions if logarithms are used. These operations are all addi-
tions if cologarithms are introduced in the calculations. Example 1 could then
be worked ag follows:

log 6.320 = 0.8007
log 8.674 = 0.9382
colog 2.851 = 9.5450 — 10
log N = 1.2839,
N = 19.23
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3. Evaluate N = V' — 5861 *

log 58.61 = 1.7680n
log (58.61)% = 0.5893n
N = — 3.885.

EXERCISES AND PROBLEMS

Compute to four significant figures by logarithms. 2\
1. 88.76 X 977.7. 7 0.8371 X 0.05631. A
2. (4.783)s. *0.734 X 19.85 ¢(\H

7N\S ¥

3. 34.21 X 76.73 X 1.026. 8. (0.9192)°. e

1 b ¢
8162 o (l)i‘ N
4 5931 2 D
5, 2781 X 3413 10. V7T
87.52 X 8.243 11, \.I/:_O—'im
6. 2180 X (—27.27) N
*17.86 X 0.0327 12. (# o
13. (0.37)09". NV
Solution: log 0.37 = 95682 — 10

log (0.37)7 %.0.37(9.5682 — 10)
= '3.5402 — 3.7000)
W V= 01598
NV =0.8402 — 10
‘ .af((}§7)°-3’ = 0.6922.
14 O7es o N R
16. v0.001 >¥40.0001 X ¥/0.00001. 22. \/(21)3'

6 V3O 23. (- 0.3333)F.
20 24, o83,
17,.¥97999. log 2
a8 {0.1)02 log 794
NN . 25. .
NS JETIE log 0.39
NN 19, (10)27 . gJ 2. ~ (og 5)(og 7)
) 1437 26, 508 0.
20. (100)0-: (log 2)(log 3)
o o 97, 1o (7:632) _ log 7.632,
1. (100)~0er, - 108 {5947) ~ log 0.947

28. V/(7635)> — (41332 = v/ (7635 + 4133)(7635 — 4133).
29. V/(9.637)" — (0.8463):.

30. Viog 3.718 — log V/3.718.

* . K . o
When a number is negative, find its logarithm without regard to signs writité

n afte.r a logarithm that corresponds to a negative number so as to keep the®
tive sign in mind.
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31. Estimate the weight of a cork ball 6 feet in diameter, then calculate
its weight in pounds. A cork whose volume is 1 cubic inch weighs 0.139
ounces. (The volume of a sphere is %7!’7‘3)

32. First estimate and then calculate the increase in weight of the ball in
problem 31 if the radius is increased 1 inch. '

33. The time ¢ of oscillation of a simple pendulum of length [ feet is given
in seconds by the formula

t = wv !
= v . N
32.16 A\

Find the time of oscillation of a pendulum 3.826 feet long. ‘\(:’i“a.ke.
T = 3.142.) -\

34. What is the weight in tons of a solid cast-iron sphere vyhpée radius is
2.728 feet, if the weight of a cubic foot of cast iron is 446.1 pounds?

35. Find the volume and surface of a sphere of radius {471 :l’eaiwx,(ng}:fnamlibrary

of a sphere = 4772.) WO
36. The stretch of a brass wire when a weight ig p}mg at its free end is
given by the relation x\
5 =%",
e

NN
"D

where m is the weight applied, ¢ = 980;.1 Is the length of the wire, r is its
radius, and % is a constant. Find &\ fo’r the following values: m = 944.8
grams, [ = 213.2 centimeters, r =,0.32 centimeter, and § = 0.060 centimeter.

37. Find the length [ of a wirg which stretches 5.9 centimeters for a weight
of 1825 grams hanging at, its{flee end, the diameter of the wire being 0.064
tentimeter, and k = 98. 1081

38. The weight P in{ pounds which will erush a solid cylindrical cast-iron
column is given by :c}ié formula,

d3-5%
>\ P = 98,920 T

&
where d is t&a“diameter in inches and I the length in feet. What weight will
erush a casteiron column 6 feet long and 4.3 inches in diameter?

39, ’Foi"wrought-iron columns the crushing weight is given by

m‘, . 4355
\ P = 209,600
What weight will crush a wrought-iron column of the same dimensions as
that in problem 38?

40. The weight W of one cubic foot of saturated steam depends upon the
Pressure in the boiler according to the formula

P0.941
W = 33036°

yvhere P is the pressure in pounds per square inch. What is W if the pressure
5 380 pounds per square inch?
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41. The diameter in inches of a connecting rod depends upon the diameter
D of the engine cylinder, ! the length of the connecting rod, and P the max-
mum steam pressure in pounds per square inch, according to Mark’s formula

d=002758VD - | - VP.
What is d when D = 20, = 72, and P = 200?

42, The discharge of water from 2 triangular weir is given by

q= —18-§H%V 29,

QY

O\
where ¢ is a constant 0.592, ¢ is the acceleration due to gravity 3'\2’.‘2 feet, per
second, and H is the waterhead. Find ¢ when H = 0.3 foot. A

43. The number, n, of vibrations per second made by a.‘stré’tched string
is given by the relation - S 4
n= 2¢/Me
AN m’ \
where [ is the length of the string, M the wei ﬁt}xsed to stretch the string,
m the weight of one centimeter of the strgng,xand g = 980. Find n, when

M = 6218.6 grams, | = 84.9 centimeters, and m = 0.00670 gram.

44. What must be the weight per tentimeter length of a wire which is
70.95 centimeters long and is stretched by a weight of 4406.5 grams, in order
that it may vibrate 178 times pex :sédond?

46. The formula y = ks7g*®) where log k = 5.03370116, log s=
— 0.003296862, log g = —{0:00013205, log ¢ = 0.04579609, gives the num-
ber living at age z in i?lunter’s Makehamized American Ezxperience Table
of Mortality. Find, ﬁe\\such a degree of accuracy as you can secure with &
four-place table of logarithms, the number living (1) at age 10, (2) at age 30.

46. The Duﬁqﬁ are said to have paid $24 to the Indians in 1626 for Man-
hat'ta,n Island, What would this $24 amount to in 1940 if it had been Placefl
at mteres{g}‘él per cent (a) compounded annually; (b) compounded seml

annualiy?

O\
344, Change of base. The logarithm of a number y to the based

~ (@8 equal to the product of its logarithm to the base a and the logardhm
N/ of a to the base b.

That is, logy ¥ = log, y - log, a. M
Let % = logs y and v = log, y. @
Then, . a =y, b° =y, ®
and a* = bv. @
a = b%, ®
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v = u log a. (6)
From (2) and (6), logs y = log, y logs a. (7)
Example: logio 128 = log, 128 logy, 2.
Since tables to the base 10 are usually available, by making
b = 10 in (7) we may write A
logy = :zg—i:z (®
'\ ”

which is useful in finding the logarithm of y to any base.\ *

| %

Ezample: logy 127 = hﬁ;’_—u}—? = (27;4_?53513 = 24804 & D
1 i 3 ’ .dbraulib
By making y = b in (7), we obtain \ www.dbraulibrar;
. P~
1 = log, b log,.d,
1 O

i = e W 9

That 18, logy a logq*b’“ 9)

The number log, a is often cé}lea the modulus of the system of
base b with respect to the syéﬁem of base a.

In Art. 135, attention i§'called to the advantages of 10 for the -
base of a system of logafithms to be used in numerical calculations.
For analytical purpois, as will appear in the calculus, it is con-
venient to use natural logarithms. This system has for its base an
irrational number” e = 271828 - --. In the chapter on Infinite
Series, ther: ~‘@ifl be given a series from which this approximation
to e is ob‘téined, and another series from which the logarithm of a
lumberto the base e can be obtained to any number of decimal
91393§- v It turns out that

V log, 10 = 2.3026,
1
and logy e = Tog, 70 0.4343.
By (1), logio y = log. y logs e,
= 0.4343 log. v,
and log. y = 2.3026 logy y.

The number logy ¢ = 0.4343 is the modulus (to four sign%'ﬁca.nt
ﬁgures) of common logarithms with respect to natural logarithms.
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EXERCISES

1. Given log. 3 = 1.0986, find log, 3 and compare the result with the
value in the table on page 190.

2. Find log. 2, log. 3, log. 11, log, 171, log. 0.5.

Find the logarithms of the following numbers:

3. 10 to the base 5. 10. 10000 to the base 100. ~
4. 10 to the base 3. 11. 3 to the base 1 N

6. 3 to the base 2. 2 RGN

6. 2 to the base 3. 12. 10 to the base 0.3. '\

7. 3 to the base 6. 13. 0.536 to the base 2.} +

8. 700 to the base 7. 14. 0.0536 to the base'2. *

9. 800 to the base 8. 'w,\\

145. Graph of y = logax(a > 1). A generabhotion of the value
of the logarithm of any number can be e xil} fixed by reference to
the graph of y = log, #. This graph ‘is’:ﬁso the graph of z = a"

. A

ad e
TN

S

0/ .
<"

S ' -
\M
= o

e Fic. 44

) .

N\ In the graph (Fig. 44) we take ¢ = ¢ = 2.718- - -, but the genefal
form of the curve is not changed if ¢ be given any other positive
value greater than 1. If the student retains this picture, b

shoulfl find it easy to keep in mind the following facts when the
base is greater than unity '

. 111 A negative number does not have a real number for its 10g#
rithm.

2. T'he logarithm of a positive number is positive or negativ®
according as the number is greater than ar locc +ham 1
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3. If = approaches zero, log = decreases without limit.
4. If z increases indefinitely, log « increases without limit.

EXERCISES
1. Plot the graph of y = logys # by using tables to find logs z.

2. Plot the graph of y = logs z.  Hini: logs z = logiz
logw 5
3. Plot the graph of z = log; y. A\
4. Plot the graph of z = log, y. a
oA\
146. Exponential and logarithmic equations. An eguation
which involves the unknown or unknowns in the exponents 1¥°often
called an exponential equation. Thus, 2¢ = 16 is an.gxponential
equation in z. In this simple example, the value of » can be ob-
tained by inspection; but a table of logarithms is, I'invgg;),egq,]mgﬁibrar:
value in solving exponential equations. RN
Such equations arise in a variety of problems.” For example, the
pressure of the atmosphere in pounds Re«f':s}luare inch at a height
of z feet is given approximately by the relation
P = Bae‘:k"
where P is the pressure at seaJevel and k is a constant.
Ezample: What is the pressiire (;f the atmosphere per square inch at a

height of one mile, given k.=,0.00003776 and pressure at sea level, 14.72
pounds per square inch? '\‘ 4

Solution: Let P be the pressure at 5280 feet, then
g =14.72¢ =,
'leé log 14.72 — kx log e,
> 1.1679 — 0.00003776 - 5280 - 0.4343,

1.0813,
P = 12.06 pounds per square inch.

[

:~\1.

’\\“

2 &

quléftions of this type also occur in certain compound interest
problems. Examples will be found in Chap. XVI.

N\ n equation which involves the logarithm of an expression that
contains an unknown is sometimes called a logarithmic equation.
Thus,

log 22 = 3
s a logarithmic equation. To solve this equation, we may write,
from the definition of a logarithm,
2z = 10° = 1000.
Hence, z = 500.
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EXERCISES AND PROBLEMS

Solve thefollowing equations for z.
1. 50 =10.
gohzt%bn: Since 5 = 10,
. logy 5% = log 10 = 1.
x log 5 = 1.
1
logiw 5

1

2. 231 522—1 amme 452 3z+1‘
Solution: loge 2% 522~1 = log 45 321,
3z logw 2 + (2x — 1) logw 5 = 5z logw 4 + (x + 1) logw 3
10z logw 2 + (x + 1) loguw 3.
Transposing and collecting terms, we have
(2 logw 5 — 7 logw 2 — logiw 3) = logw 3 + logw 5.

logi 3 + logw 5
2 10g1o 5—7 logw 2 — logw 3

_ 04771 + 0.6990
13980 — 2.1070 — 0.4771

— 0.9916.

=

3. 16 = logy 2
Solution: 16 = logy 22,
From (1), 2 = 101,
r = + 105
. 20 =5, 8. 27z = 64.
. (0.2)= = 0.5. 9. 3logiwzr —4=0.
. 72278 = 10. 10. 3logwz +4=0.
. &% = 100. . 11, (logp )2 —logz — 6 = 0.

logiw (x 4+ 1)
) ].Ogm xr -

. logu = -+ logy (z + 3) =1.
. 12(log z)* + 5logz — 2 = 0,
- 1 4 logw 2 = logy (1 + ).

2. Hint: 2logy x = logy 22

l

- In a geometric progression, I = ar™t, solve for n in terms of 6

; - rn — .
. In a geometric progression, s = % la’ solve for n in terms of
r —
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Solve for z and y the following systems of equations:

18. 5oty = 82, (1)
3:—14 = 4, (2)
Solution: From (1) and (2),

(z 4+ y) log 5 = log 82, ®
(z—y log3 = log 4. 4)

Solving the linear equations (3) and (4) for z and y, we get

5= log 82 log 4 - 1.9138 | 0.6021
2log5 ' 2log3 1.398 ' 0.9542
_ log 82 log 4
2log5 2Iog4d
19, 3=+v = 10, 20. 5%ty = iz
22 = 35, r—y+5=0. N
21. Solve for z the equation e 4 e—* = y; (a) when y w&%b&lhﬂ\ﬁhh
y=4. N
22. If fluid friction be used to retard the motion of a flywheel ma:l'(i’ng
Vo revolutions per minute, the formula V = Ve gives the n{fnber of
revolutions per minute, after the friction has been applied ¢ seconds” If the
constant & = 0.35, how long must the friction be applied\@\ reduce the
number of revolutions from 500 to 50 per minute? A\
23. The pressure, P, of the atmosphere in pounds, péP &quare inch, at a
height of z feet, is given approximately by the relation™\
N
P = Poe ke, £\
where Py is the pressure at sea level and & ig%é'onstant. Observations at
sea level give Py = 14.72, and at a height of\1122 feet, P = 14.11. What is
the value of k? N

24. Assuming the law in problemMZ'B” to hold, at what height will the
bressure be half as great as at sea level?

25. If a body of temperature T:° be surrounded by cooler air of tempera-
ture T¢°, the body will gradually become cooler and its temperature, .T°,
after a certain time, say ¢ minutes, is given by Newton’s law of cooling,
that is,

= 2.000. 5)

0.7380. 6)

\

T =T+ (T, — Toe™,

where & is a constant. In an experiment a body of temperature 55° C. was
left to itself in air whose temperature was 15° C. After 12 minutes the tem-
Perature was found to be 23.8°. What is the value of k?

26. Assuming the value of & found in problem 25, what time will elapse
before the temperature of the body drops from 23.8 to 20°?

27. Ifa=logcb,b=logac,c=logga,provethata-b-c= 1. o

28. In solving. an important problem in the elements of mechanics, it
turns out that

ks+m
e —

Vo

1
t="Elo
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where s is the distance traversed by a moving point in time £. It is, in general,
more usefukto have s in terms of ¢ than ¢ in terms of s. Hence, express s in
terms ofaf)

147 Calculation of logarithms. At this point the inquiring

.stﬁdent will naturally bring up the question as to how the loga-
rithms of numbers are computed so as to make a table of loge-

rithms. Logarithms were invented by Napier about the year 1600
and common logarithms by Briggs a little later. The invention
grew out of the comparison of two series of numbers — the onein
arithmetic progression and the other in geometric progression.
The following theorem lies at the foundation of the early methods
of computing logarithms:

If a series of numbers are in geometric progression, their corre-
sponding logarithms are in arithmetic progression.

Let the numbers in geometric progression be

a, ar, ar?, ars, - -+, ar~L,

Then, log a, log ar, log ar?, log ar3, - - -, log ar*!
are in arithmetic progression.

In this arithmetic progression, the first term is log a, and the
common difference is log 7. The following example illlustrates the
use of this principle in caleulating logarithms:

Given log 1 =0, logy, 1000 = 3, the geometric mean between
1 and 1000 is V1000 = 31.62. Then 1, 31.62, 1000 is a geomet-
ric progression, and 0, 1.5, 3 is the corresponding arithmetic pro-
gression, so that 1.5 = logy, 31.62. Next, insert a geometric mean
between 1 and 31.62, also between 31.62 and 1000. This gives

1, 5.624, 31.62, 177.8, 1000 as the geometric series,
and 0, 0.75, 1.5, 225 3 as the corresponding logarithms.

We could next insert between any two of these numbers 2 g0
metric mean, and find its logarithm. By continuing this proc-
ess, we could insert means until the numbers would differ by 8
little as we please. This method of calculating logarithms has the
disadvantage of giving the logarithms of numbers spaced Uv°
equally, since the numbers are in geometric progression.

Another method of obtaining logarithms, which has many ad-
vantages over the one just given, is discussed briefly in Art. 20l
of the chapter on Infinite Series; but its more complete treatment
belongs to the calculus.




CHAPTER XVI
COMPOUND INTEREST AND ANNUITIES

148. Compound interest. When interest due is added to the
principal at stated intervals, say annually, semiannually, or
quarterly, the interest is said to be compounded or converted into
principal. The conversion period is the time between two succes-
sive conversions of interest into principal. If no conversion period
is named, it is ordinarily understood to be one year.

If P is the original principal, 7 the rate per conversion period,
the sum S, called the compound amount, to which P willvacetmashibra
late at the end of n conversion periods is N

S = P + o)~ AN

To prove this we may proceed as follows: ¢ "\

Interest due at the end of the first period is Px. . The amount
at the end of the first period is N

P+ Pi=PQ1+4). (y
The new principal after the first conversion, p’gr}od is thus obtained
by multiplying the principal at the beg\@nihg of the period by
1 + 4. Applying this multiplier to the’,sjuccessive principals, for n
periods, we obtain the amount .S given by (1).

The compound amount diminis%:e"d by the original principal is
called the compound interest.

149. Present value. The problem of finding the present value
of an amount S due after n years at rate ¢ per year is solved by
finding P in (1) when S, 7, and n are given. That is, the present

‘value is S

p=_2 )
I+
In the absence of compound interest tables,* the computations in-
volving compound interest offer applications for practice in the use
of logarithms,
— o7 s . .

* Tables of compound interest and annuities certain, sufficiently extensive for
many practieal purposes, are given in books on mathematics of finance. Ff)r a
88t of sych tables, see Mathematics of Finance, by Riets, Crathorne, and Rietz,

enry Holt and Company.
203
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EXERCISES AND PROBLEMS

1.°Find the amount of $1000 in 10 years at 39, interest compounded

annually:
'\'Ifrthis case, S = $1000 (1.03)™,

« \Form for solution by logarithms:

logl03 =
log (1.03)10 =
log 1000
log S =
S =
2. What principal will amount to $2000 in 10 years at the rate .03 com-
pounded annually?
Form for solution: P = $2000
= @o3)m
log 1.03
log 2000
log (1.03)w
log P
P=
3. Find the amount of $1000 in 10 years at 39, interest converted semi-
annually.
Hint: § = $1000 (1.015),
Find the compound amount and the compound interest, to the nearest
dollar.
4. Of $600 for 8 years at 4%, compounded annually.
5. Of $180 for 4 years at 5%, compounded semiannually.
6. Of $900 for 4} years at 6%, compounded semiannually. )
7. What sum of money invested at the rate of .03 compounded sem:-
annually from a child’s birth will give him $2000 at age 21?
8. In how many years will any sum double itself at the rate .04 com
pounded annually?

9. In how many years would $100 amount to $400at the rate .06, cO%"

-verted quarterly?

10. Construct a graph of the function y = (1.04)" to show the variatio?
of the amount y with respect to the time z.

1. If m had been kept on interest at 39, compounded annusally; from
the beginning of the Christian Era to the present time, how many digt

would ocour in the integral part of the accumulated amount when expres
in dollars?

12. If the $24 said to have been paid to the Indians in 1626 by 4%
Minuit for Manhattan Island had been on interest at 49, compol?

. i1
annually until 1039, find the accumulated amount expressed in dollars cO™*
to two significant figures.
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18. If interest is at nominal rate j per year but is converted m times g
year, show that formula (1), Art. 148 becomes

y \ mi
S=P(1+%) )

where ¢ is the time in years. Check your solution of problem 3 on page 204 by
the use of this formula.

14. Tf the number m of interest conversions per year in problem 13 in-
creases beyond bound, the interest is said to be converted continuously and
the formula for the amount becomes

8 = Pei,
where ¢ is the base of natural logarithms. (See Arts. 144 and 146.) Find
the amount of $100 in 5 years at .04 converted continuously. \
15. Find the amount after 20 years if $1000 is invested at the raiéf 5% N
WW. bra‘ilh )

w
(@) converted annually.

(b) converted semiannually. 3
{c) converted continuously. 9

o\

150. Annuities certain. An annuity certain is a set'of equal
Payments made at equal intervals over a fixed period of'time. For
example, suppose a fraternity is in debt on a chapter.house, and is
to pay $2500 at the end of each year for 20 yeats'to discharge the
debt, both interest and principal. The set of payments constitute
an annuity certain. AV

Two questions about annuities natm;ﬁlhr arise:

(1) To what amount would thg\pa:jrinénts accumulate at the end
of the paying period? )

(2) What is the present value of the payments?

For simplicity, we shall limit* our answers to these questions to
cases in which the payments are made yearly with the first pay-
lents at the end of the year, and the rate is ¢ compounded an-
nually. To take up the problem involved in question (1) let E be
the year ly payment.

The first payment of B will accumulate to R(1 + z:)"'l.

The second payment of R will accumulate to R(L + o=

The third payment of R will accumulate to R + Z.)"’a.

The next to the last payment of R will accumulate to R(1 + 4).

The last payment of R will accumulate to R.
\

* For a more complete treatment, see Mathematics of Finance, by Riets, Cra-
thorne, angd Rietz, Henry Holt and Company.
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Reversing the order and adding, and letting K be the sum we
have N

AK=ROI+0+)+ - +A+)?+ 0 +)]

\ ~~\The right-hand member is a geometric progression of n terms
“\in which the first term is R and the common ratio is 1 + ¢. The

sum, called the amount of the annuity, is then (Art. 84)

1+ -1
i

K=-R 3)

To take up the problem involved in question (2), we define the
present value of an annuity as the sum of the present values (Art.
149) of the separate payments. The present values of the pay-
ments of R each beginning with the first one are

RA 4+ RQA 442 -+, RQA+2)™
We have then for the present value of the annuity
P=R[A+)T+ QA+ + - + 1 +0)7]

a geometric progression whose first term is R(1 + ¢)7}, last term
R(1 + 7)™, and common ratio (1 + ¢)~'. Summing the series we
have (Art. 84)

p=RM. @

EXERCISES AND PROBLEMS

1. A man sets aside $200 at the end of each year towards a fund for his
son’s college expenses. He invests the money at rate .04 compounded a
nually. Calculate the amount at the end of 15 years as nearly as you can usi?g
a five-place table of logarithms to find (1.04)%,

Solution: From (3) we have the amount

1.04)5 1
S = o009 (LODH* —~ 1
0052

By five-place logarithms (1.04)® is found to be 1.801.
Hence (1.04)% — 1 = 801.

200
8 = 57 (:801) = 84005,

correct somewhat acéidentally to the nearest dollar.

2. A man pays $26.08 paving tax at the end of each year for 10 yeurs

If the interest charge is 5%, what is the actual tax for the paving the
nearest dollar?
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Solution: From (4), we have for the present value of the annuity certain

_ 1— (1.05)10
P = 2608 ~— 20

By four-place logarithms, (1.05)~ = 6137, hence 1 — (1.05)~10 = 3863,

Hence, P = w

05 = $201.

Find the amount and present value of the annuity described, correct to
the nearest dollar.
8. $300 at the end of each year for 10 years, at 3% compounded annually
- 4. $150 at the end of each half-year for 20 years, at 49, per annum com-
pounded semiannually.
5. To discharge a debt on a house and lot the owner agrees to pay $1000
at the end of each year for the next eight years. What is the equivalent cash R

price to the nearest dollar if money is worth 5%, convertible apRralabraubibrary i

6. The beneficiary of a life insurance policy is to receive 31000 at, Hje’
death of the insured, and $1000 at the end of each of the next nine years.
Find to the nearest dollar the equivalent cash payment at the date‘ofNdeath
of the insured if money is worth 34% converted annually. O

7. The amount of an annuity of $750 per annum for three years 1 $2341.20.
Write down an equation whose solution for ¢ is the rate of jntgerest. Show by
substitution that .04 satisfies the equation. o

8. Test the accuracy with which you can compu‘te? the amount of an
annuity of $1000 per year for 10 years at rate .06, gqﬁv"erted annually,

(@) by using four-place lo%a‘iiﬂims,
(b) by using ﬁve-placg l,c?ga ithms,
(c) by using seven—pl\acgé‘logarithms.

The answer to be used as a test is'$]£37f80.79 to the nearest cent.

9. A debt of $8000, at 6%, compotnded annually, is discharged by eight
equal annual payments at the ends of the years. Required the annual pay-
ment to the nearest dollar.

10. A house for sale is listed at $8000. The seller agrees to take $3200
cash and $800 per annum for 6 yeaks without interest. If money is wox:th
6% per annum in such transactions, what reduction was made in the price
of the house?




CHAPTER XVII

PERMUTATIONS AND COMBINATIONS

151, Introduction. Two positions are to be filled in an office
—one that of stenographer and the other that of messenger.
There are 12 applicants for the position of stenographer, and 3
for that of messenger. In how many ways can the two positions
together be filled?

The position of stenographer can be filled in 12 ways, and with
each of these there is a choice of 3 messengers. Hence, the two
positions can be filled in 12 X 3 = 36 ways.

This example illustrates the following

FunpaMeNTAL PRINCIPLE. If onme thing can be done in m dif-
ferent ways; and if, after this is done in one of these ways, @ secmd
thing can be done in n ways, then the two together can be donein
the order stated in mn ways.

For, corresponding to each of m ways of doing the first thing
there are n ways of doing the second thing. In other WOffiS:
there are n ways of doing the two together for each way of doing
the first thing. Hence, there are in all mn ways of doing the tW0
things together.

A convenient and evident extension of the fundamental principle
may be stated in the following form:

) If one thing can be done in m; ways, a second in ms wWays, @ third
in ms ways, and so on, the number of different ways in which they
can be done when taken all together in the order stated ts mamams ="

152. Meaning of a permutation. Each different armngeme"t

which can be made of all or part of a number of things 1is called @
permutation. :

By the expression “number of permutations of n things take?
r at a time” is meant the number of permutations consisting of f
things each which can be formed from n different things. Thus,
the permutations of the letters abc taken all at a time are

abe, ach, bac, bca, cab, cha
208
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The permutations of the four letters a b ¢ d taken three at a

time are
abe bac cab dab

ach bca chba dba
acd ‘bed cbd dbc
adece bde cdb deb
abd bad cad dac
adb bda cda dca

163. Permutations of things all different. The special cases
just considered lead us to the problem of deriving a formula for
the number of permutations of n things taken r at a time. The ¢
symbol P(n, r) is used to represent this number. o\

The number of permutations of n different things@akezdbray}abié
time 1s N
P, r)=nn—1)-(n—r+1). 2 )
The number P(n, r) required is the same as the nun}ber\of ways
of filling r different positions with n different things. ~We may
represent the n things by as, @z, - - -, @. and ask he¥ many permu-
tations of  letters can be formed from them.s, For the first place
there is a choice of n letters, for the second.a choice of n — 1, for
the third a choice of n — 2, and so on.  For“the rth place there is
then a choice of n — 7 + 1 letters. Ifrgf}ﬂbws (Art. 151) that

Pn =nmn -1 = r+ 0=t W
When r = n, (1) becomes i
Pn,n) =n(n—1)---2-1=nl @)

That is, the number of permutations of n things taken n at a time
isnl

154. Permutations of n things not all different. Consider.the
humber of permutations of the letters in tl.le word book. It gives
16 new.permutation to interchange the o’s. Let P be the number
of permutations. If we should replace oo by dissimilar characters
0102, there would be 2! permutations of 0,0, corresponding to each
of the P permutations. But if the letters were all different the
Dumber of permutations would be 4!. Hence, )

!
M=mP,P=%=Ha
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This example illustrates the

Tarekem. If P is the number of permutations of n things taken
all at*q time, of which n, are alike, ng others alike, ns others alike,
and\so”on, then

n!
n1! 1’),2‘ n3! e

To establish the theorem, suppose we should replace 7 like
things by n, unlike things, there would be P - 7, ! permutations
obtained from the original P permutations. In each of these
permutations there would be n, things alike, and ns others alike.
Similarly, replacing the n; like things by 7, dissimilar things, we
get P - my! - me! permutations in each of which there would be 7
alike. Continuing this argument, we find that the number of per-
mutations of n things taken all at a time, when = are alike, mz
others alike, n; others alike, and so on, is given by

_ n!
n.1! nz! n3! M

'EXERCISES AND PROBLEMS

1. How many different permutations can be made of the letters of the word
“numbers” when taken three at a time; four at a time?

2. Five cards each having a different design may be arranged in a Io¥ in
how many different ways?

3. If two sets of the cards in problem 2 are shuffled together and spre&d
out in a row, how many arrangements may be made?

4. Tf the cards in problem 2 were placed equally spaced about 2 Ting,
how many different arrangements could be made?

5. If the cards in problem 3 were placed equally spaced about 2 ring, how
many different arrangements could be made?

6. A certain automobile is made in five body types, three choices of Whe,el?"
and six different color schemes. How many cars are necessary for an exhibit
showing all possible cars?

7. In how many ways can nine books be arranged on a shelf if two of the
books are to be kept together?
8. Given P(n, 7) = 30P(n, 5), find n.

9. What would be the maximum number of Greek letter fraternitics

having distinet names consisting of three different letters (the Greek alph¥
bet contains 24 letters)?

10. How many Greek letter fraternities may be organized having pamé®
of three letters, repetitions of the letters being allowed?
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11. How many Greek letter fraternities are possible having either two or
three letters in their names?

12. If all the letters of each of the words in college algebra’’ are rearranged,
how many pairs of permutations are possible?

13. Solve for n, 3P(n, 5) = 68P(n — 2, 4).

14. How many integers less than a million contain the digits 1, 2, 3, 4 in
the order given?

155, Combinations. A .set of things or elements without refer-
ence to the order of individuals within the set is called a combination.

Thus abe, ach, bac, bea, cab, cba are the same combination. By
the “number of combinations of n things taken r at a time” is
meant the number of combinations of r individuals which can be

formed from = things. w.dbra %“

Thus, the combinations of a b ¢ taken two at a Umg are_ab,,

ac, be. N

156. Combinations of things all different. Let C(n,‘.r?:denote
the number of combinations of n things taken r at a t{i{e: Then a
formula ean be derived for ¢ (n, r) by establishing. h

e relation be-

tween C(n, r’ and P(n, ). 74

Take one combination of r things; with this 7! permutations
can be made. Take a second combinationC¥vith this 7! permu-
tations can be made. There are thus.N"permutations for each
combination. Hence, there are in all ’Q(n, r) - r! permutations of
n things taken r at a time. That ds,™

Cln, ) - = Pn, 7)
P(n, 1)
=T

T
Since Pin,r) =n(n—1) --- (n — r + 1), (Art. 153)

nn—-1).---(n—r+1)
r!

whence Cln, r) =

we have Cln, 1) =

Multiplying numerator and denominator by (n — 7)1, we get

n!
rin - 0!
an—1)--- (r+1) n!
T m-nl (-l
it follows that the number of combinations of ‘n thin.gs taken r
at a time is the same as the number taken n — r at a time.

Cn, 1) =

Since Cln,n—1) =




7
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157. Binomial coefficients. It may be noted that the formuls
for C(n,).is the coeficient of the (r + 1)st term of the binomial
expansion (@ + z)” The binomial theorem for positive integral
exp'éhéhts may therefore be written in the form

\(@4 o) =a"+C(n, NaT'z+C(n, 2)a*+ -+ +C(n, n—-1)az™

W

+ C{(n, n)z".

158. Total number of combinations. The total number of com-
binations of n things taken 1,2, 3, -+ -, n at a time is 2 — 1. Ifwe
write the binomial theorem as in the last section, we obtain

(1+2z)*=1+C(n, 1)z+C(n, 2)z2+ - - - +C(n, n—1)z*14C(n, n)z"
Putting z = 1, we get
»—-1=Cn,1)+Cn,2) + --- + C(nyn — 1) + C(n, n).

EXERCISES AND PROBLEMS

1. How many different debating teams of three men each may be selected
from eight candidates?

2. How many distinct straight lines may be drawn through seven points
no three of which are on the same straight line?

3. From four employers and eight employees in how many ways can &
committee of five be chosen to include one and only one employer?

4. If any arrangement of letters is considered to be a word how many
four letter words are possible from the English alphabet (a) if each word musb
contain at least one vowel; (b) if no repetitions of any letter are allowed;
(¢) if repetitions are allowed?

5. Tn an examination with 13 questions the student is to answer 10, tW0
or three of which must be chosen from the first three questions. In ho#
many ways may the student choose the ten questions?

. Prove that C(n, r) = C(n, n — 7).
. Given C(n, 2) = 153. Find n.
. Given P(n, 1) = 840, C(n, r) = 35. Find n and r.
. Solve for n, P(n, 4) = 30 C(n — 1, 3).
. Solve for n, 35C(2n, n — 1) = 132C(2n — 2, n).
C,r) _ 5 )
c@o,r) 18
- In how many ways can a pack of 52 playing cards be divided into

four hands, the order of the hands, but not the cards in the hands, t© be
regarded?

. Solve for r,

13. How many committees each consisting of five students and tW0 pro-
fessors may be formed from a group of ten students and four profeSSOI'S?

14. In how many ways may six books be arranged on a shelf so that 2¢
two of three particular books are ever together?
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16. Find the number of ways of dividing 11 things into groups of 5 and 6.

16. Find the number of ways of dividing 12 things into two equal groups.

17. Show that the number of ways of dividing 2n things into two equal
groups is the same as the number of ways of dividing 2n — 1 things into
groups of n and n — 1 things.

18. In how many ways may three different prizes be given to three boys
when each is eligible for all the prizes?

19. How many different products can be formed from the five numbers
2,3, 5, 7, 11 taking two or more numbers at a time?

20. How many different products can be formed from the five numbers
2, 3, 4, 5, 6 taking two or more numbers at a time?
21. In how many ways is it possible to draw a sum of money from a bag
containing a dollar, a half dollar, a quarter, a dime, a nickel, and a cent. .
22. In how many ways can a bridge hand of 13 cards be made up of 3 dia- 3
monds, 3 hearts, 3 spades and 4 clubs? www.dbraulibrary
23. If K = C(n, 2), show that C(K, 2) is three times Cn+1,4). N
24. How many different combinations can be formed with the following
weights? \
1 l-gram 1 10-gram 1 100-gramy
1 2-gram . 1 20-gram 1 200<gram
1 3-gram 1 30-gram 1 300-gram
1 5-gram 1 50-gram 179500-gram
71, 4000-gram
26. Find an expression for the number of peyrgu}a,tions of n things taken
three at a time when two of the n things are 'alq;e.’
26. Find an expression for the number’ of: (%mbinations of n things taken
three at a time when two of the things.are alike,
27. How many baseball teams of Q'n;ien' each may be chosen from 14 players
of whom 7 are qualified to play in the/infield only, 5 in the outfield only and
2 in any position? The battery is included in the infield.
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CHAPTER XVIII
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RELATIVE FREQUENCY AND PROBABILITY

{\" 159. Meaning of relative frequency. A bag contains white and

black balls alike except as to color and thoroughly mixed. The
drawing of a ball and replacing it is called a trial. Suppose we make
100 trials and obtain 31 white balls. Then we say 5 is the rela-
tive frequency of white balls in this set of drawings.

In making a trial we often call the happening of the event in
question a success. In the above case the drawing of a white ball
may be called a success and the drawing of a black ball a failure.
In general, if we make # trials resulting in m successes and n — M

failures, we say that % is the relative frequency of successes and

— M s the relative frequency of failures in the n trials.

The sum of the relative frequencies of successes and of failures
. m, n—m
is clearly e_zqual to » + i 1.

Query. What was the relative frequency of deaths in a year among 10,000
persons of equal age if there were 50 deaths within a year?

160. Meaning of probability of success. If we increase the
number of trials described in Art. 159 from 100 to any larger num-
ber, say to 1000 or more, we would not necessarily find exactly the
same relative frequency of successes. Next, if we conceive of in-
creasing the number of trials and of calculating a new value of the
relative frequency of successes after each trial we may find that the
sequence of relative frequencies approaches a limiting value (See
Art. 181). If there is such a limiting value, it is called the proba~
bility of success in one trial. Thus, if we conceive of repeating
indefinitely the drawing of a ball from a thorough mixture of balls,
three-tenths of which are White, we may assume that the relative
frequency of white balls would approach three-tenths and we say
three-tenths is the probability of obtaining a white ball in 01€

trial. This illustrates the following definition of the probability of
success in one trial:

214
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If the relative frequency of successes approaches a limit when the
trial is repeated indefinitely under the same set of circumstances, this
Limit is called the probability of success in one trial.

Since the sum of the relative frequency of successes and of fail-
ures is 1, it readily follows that the sum of the probability of success
and of failure ts 1.

In framing this definition we idealize our actual experience. We
say the probability that a penny will fall “heads up’’ is one half.
This may be looked upon as an answer to the following question:
What should we expect in the long run for the ratio of the number
of heads to the total number of pennies tossed?

When applying the above definition of probability, a question
very naturally arises about the meaning of the expression, ‘‘the
same set of circumstances”; for we may in a sense question

®

whether two or more dice could be tossed under the é”a"rﬁ%“éﬁ"éﬁfﬁk%hr

stances, or again whether two or more men of the same age'eguld
live under the same set of circumstances. Without taKing the
space to discuss at length this question, some light may_ e thrown
on it by saying that the expression implies the absenge of specific
differences. For example, since we can specify the, difference be-
tween loaded dice and unloaded dice, between. heglthy and diseased

men, between old and young men, we do xioﬁ.include two such
kinds in the same group. \

O )
161. Approximate probability derived from observation. After

ccesses m/n in n trials

we have obtained a relative frequiency of su s
). further knowledge, it 1s

(n a large number); then in the Jabsence of

usually assumed that ™ is a good estimate of probability of success
n

in a given trial and that confidence in this estimate increases as n

tncreases.

Such estimates of probability are/ol
surance and statistics. F\or example, if we observe 80,000 men of
a well defined class, say of age 30, and find that 480 deaths occurred

during the year, we give, gooss = 006 as an estimate- of proba-

bility that a man of this class will die within a year.

f much practical value in in-

162. Probability derived from an analysis into eq
ways. In certain cases, notably in games of c.hamfe, the prob?-
bility may be obtained by an analysis of all trials.into & certain

ually likely

ar
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number of equally likely ways. For example, consider the case of
a bag containing three white and seven black balls. What is the
probability}hat a ball to be drawn will be white? To answer this
questioh,’ we may analyze all possible drawings into 10 equally
likely cHises of which three will give white balls. We give 3/10
88 the probability of drawing a white ball. This simple case illus-
s\trates the following process of arriving at a probability:

If all the successes and failures can be analyzed into r + s possible
ways each of which is equally likely; and if r of these ways give suc-
cesses, and s of them failures, the probability of success in a single

T - . . ... 8
s and the probability of failure in the trial s P

In this connection, the fact should not be overlooked that the
ways were assumed to be “equally likely.” To illustrate the need
of precaution in this matter, consider the following

trial 1s

Example: What is the probability that a man, A4, in good health
will die within the next 24 hours?

We might argue that the event can happen in only one way and
fail in only one way, and that the probability that 4 will die n
the next 24 hours is therefore 4. What is the flaw in this argu-
ment?

The expression “equally likely” indicates that we have no more
reason to expect the event to take place in one way than in any
other.

.In the above analysis into equally likely ways, the odds are
sald to be r to s in favor of the event if r > s, r to s against it if
r<sevenif r =g,

ORAL EXERCISES

,1’.? What is the probability that a coin tossed at random will fall t‘heads
up”’?

2. What is the probability of obtaining an ace in throwing a single die?

8. If the probability of losing a game is 0.55, what is the probability of
winning it?

4. From a class of 25 students of whom 10 are girls, one student is t0 be
selected by lot. What is the probability that a girl will be selected?

6. Out of 40 children born in g village in a given year, 22 were boys and 18

were girls. What is the relative frequen i hildren bor®
in the village in the year? quency of girls among the ¢
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6. The odds are even that A will win a game. What is the probability that
he will win it? }

163. Mathematical expectation of money. If p is the proba-
bility that a person will win a sum of money m, we may define
his mathematical expectation as pm.

164. Expected number of occurrences. The expected number
of occurrences of an event in # trials is defined to be np, where p
is the probability of occurrence of the event in g single trial. It is
an immediate and useful consequence of this definition that the

probability of occurrence of an event is the ratio, % = p, of

the expected number of occurrences to the number of trials. \

PROBLEMS www.dbraulibrary.

1. If a man makes a single trial on & gambling machine where the stake

is $30 and where the probability of winning in one trial is %, ~vhat is his

mathematical expectation? )

2. In a lottery, the prize is $10, and 100 tickets have bée\hsiésued. What
is the mathematical expectation of a man with 15 ticketsh,

3. A bag contains 4 white balls, 3 red balls, and 27blck balls. What is
the probability that a ball drawn at random will¢De White? Will be red?
Black? Red or black? R ‘\"

4. If the odds are 3 to 2 in favor of a man winning a prize of $100, find
(@) his probability of winning, and (b) his siatliematical expectation.

5. In the United States in 1933 thereSwere 2,081,282 live births. Of these
children 1,068,871 were boys and 1,,,Q]:2’;36’1 were girls. Compute the relative
frequency of boys among the cHildten born in the United States in 1933,
correct to four significant figures.

6. It is suggested that each student in the class throw a coin at random
50 times and record the number of heads. Combine the results for the class
and find the relative frequency of heads. Compare the result with the proba-

bility, %, of throwing a head with a single coin.

7. Six coins are tossed. What is the probability that exactly two of them
are heads?

Solution: Since each coin can fall in two ways, the six can fall in 26 = 64
ways. The two coins can be selected from the six in C(6, 2) = 15 ways. Hence
the probability is g

8. From a bag containing 8 white and 4 black balls, 2 are drawn at random.
Find the probability that () both are white; (b) one is white and one is black.

9. From 10 men and 5 women, a committee of 4 is chosen by lot. Find
the probability that the committee will consist of 2 men and 2 women.
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10. At a bridge party attended by four married couples, cach man is to be
assigned a weman partner by lot. Find the probability that each man wil
draw his owad wife as a partner.

11, .A?gambler is to win $300 if an ace is thrown with a single die. What
is hi\mathematical expectation?

p ,lé Trom g suit of 13 spades, 3 cards are to be drawn. What is the proba-
~ ‘bifity that an ace, a king, and a queen will be drawn?

13. Volumes 1, II, ITI, IV of Cantor’s History of Mathematics are placed on
a library shelf at random. What is the probability that the volumes will be
in the correct order: I, I, ITI, IV?

14. If 0.006 be the probability of death within a year of a man aged 35
what would be the expected number of deaths within a year among 25,000 such
men?

16. According to the so-called ‘‘ American Experience Table of Mortality”
(constructed in 1868 when relatively little experience was available on insured
lives in America), out of 89,032 persons living at age 25, there are 69,804 who
reach age 50. From these data, estimate, correct to three significant figures,
the probability that a man aged 25 would not live to reach age 50.

168. According to the “ American-Men Mortality Table” (constructed from
an immense number of insured lives in the United States and Canada exposed
to risk between January 1, 1900 and January 1, 1915), out of 96,203 men living
at age 25, there are 82,805 who reach age 50. From these data, estimate
correct to three significant figures, the probability that a man aged 25 would
not live to reach age 50. Compare this result with that derived from the
older table in problem 15.

165. Theorems of total and compound probability. Consider
the questions: What is the probability of throwing either an ace
or a deuce in a single throw with a die? What is the probability
of throwing two aces in a single throw with two dice? The first
question belongs to a class of questions answered by applications
of a proposition called the theorem of total probability, the second
to a class answered by applications of a proposition called the
theorem of compound probability. '

Let i, By, -+, E. be a set of r events whose probabilities of
occurrence in any single trial are p,, p,, - -, p, respectively. The
f}xpected number of occurrences (Art. 164) of the several events
In 7 trials is np;, np, - - -, np, respectively.

Excl.usive events. The events of a set are said to be mutualy
exclusive when the occurrence of any one of them in a trial ex
cludes the occurrence of any other in that trial. Thus, the thro¥

ing of an ace and a deuce with a single die are mutually exclusiv®
events.
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When the events Ei, Es, ---, E, are mutually exclusive, the
expected number of occurrences for the total set of r events in n

trials is
np1 + np: + -+ + npy, 1

the sum of the expected values for the separate events.

Since the total probability P for an occurrence is the ratio of
the expected number of occurrences (Art. 164) for the whole set
to the number of trials, we have

P=7M%i_@1=pl+p2+"'+pn (2)

which may be stated as the ¢
Theorem of total probability. The probability that some one ors

other of a set of mutually exclusive events will happen sndbreidghgary .o
trial is the sum of the probabilities for the separate events.

Thus, the probability of throwing either an ace or a (@"uce with

one dieis ¥ + % = %. )

Independent events. The events of a set are said to be mutually
independent or dependent according as the, gogurrence of one of
them does not or does affect the probability\of occurrence of others

o X
"\

in the set. N
In n trials, where n is a large nun\lb}r',’ the expected number of

occurrences of event By is np: (Artalfs). Out of this number, np;,
the expected number of occurxen@;‘eé’ of event Es is po(npy) = npip:.
That is, both are expected %o Joceur npip: times in the 7 trials.
Continuing this process, the expected number of occurrences of all
of the r events is
npips * " Pr

Then from Art. 164, the probability, P, that all of the 7 events will
happen in one trial is the ratio

PR A

which may be stated as the

Theorem of compound probab
probability that oll of a set of in
given occasion when oll of them are n ques
separate probabilities.

ility for independent events. The
dependent events will occur on a
tion is the product of their
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Thus, the probability of throwing two aces in a single throw
with two dice is ¥ - § = .

Theerem for dependent events. If the probability of a first eveni
is pundnd if, after this has happened, the probability of a second event
48 'ps; then the probability that both events will happen in the order

slated is pyps.  The extension to any number of events is obvious.

PROBLEMS
1. What is the probability of getting either two heads or two tails in throw-
ing two coins?
2. A bag contains 10 white, 5 red, and 3 black balls. A ball is to be drawn.
What is the probability that it is either white or red?

3. The probability that A will win a game is %, and that B will win another

independent game is 4% What is the probability that both will win?

4. The probability that A will live ten years is % and that B will live ten
. 4 . -
years is & What is the probability that both will live ten years?
5. What is the probability of throwing either an ace, or a deuce, or & trey
with a single die?

6. Find the probability of drawing 2 white balls in succession from a bag
containing 5 white and 6 black balls if the first ball drawn is not replaced
before the second drawing is made.

7. One purse contains 9 coins consisting of 2 dimes, 3 quarters, and 4 half
dollars. If one coin is drawn at random from the purse, what is the probability
of its being either a quarter or a half dollar?

8. If the probability is é that the height of a man selected at random

1
from a group of men is between 5 feet 8 inches and 5 feet 9 inches, andg
that it. is between 5 feet 7 inches and 5 feet 8 inches, what is the PrObabﬂity
that his height is between 5 feet 7 inches and 5 feet 9 inches?

9. A bag contains 6 balls'marked 1,2,38,4,5 6. A ball isdrawn and nqt
replaced. A second ball is drawn from the 5 remaining in the bag. What 18
the probability that the first ball drawn was marked 1 and the second 27

10. A coin is thrown twice. What is the probability that the first thro¥
gave a head and the second throw a tajl?

11. A traveler has three independent railroad connections to make. If the

e s 2
probability is 3 that he would make any particular connection taken alon®,

what is the probability of his making all three connections?

12. The prob.ability that 2 man of a certain age will die within 20 yemif
0.2, and that his wife will die within that time is 0.15. What is the prob®
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bility that at the end of 20 years (a) both will be dead? (b) both will be
living? (c) the man will be living and his wife dead? (d) the man will be
dead and his wife living?

166. Repeated trials. If p s the probability that an event will
happen in any single trial, then C(n, r)p'¢™ is the probability that
this event will happen exactly r times in n irials, where g=1~pis
the probability that the event will foil in any single trigl.

For, the probability that it will happen in each of sﬁeciﬁed
trials and fail in all the remaining n — r trials is P (Art.
165), and r trials can be selected from n trials in C(n, r) ways.
These ways being mutually exclusive, we have by Art. 165, that
the probability in question is

O~'
~

Cln, n)pg. www.dbra.g.h:h.réry.o

It will be observed that C(n, 7)p'¢* " is the (n — r 4 1)th tér'.m.of
the binomial expansion of (p + ¢) Ve

Illustration: Three dice are to be thrown. What is thg{i)y\obabﬂity of
obtaining exactly two aces? ’\\ -

Solution: The probability given by the second term™sf the binomial ex-

. 1 5\, 6
pansion (3 + 5) is 72
. .. T 7

We next inquire into the probability~that an event such as is
described above happens at least 7 #ieS in n trials. The event
happens at least r times if it happensexactlyn,n — 1,n — 2,---,0r
r times in 7 trials. < ;\ .

Hence, we have the folloWing

Tarorem. The probability that an event will happen af least r
times in n trials is p* + C(n, n — Dp™ ¢ + C(n, n — 2)prig® +
<o 4 Cn, pg~.

This expression is the first n — r + 1 terms of the binomial ex-
pansion of (p + ¢)™

Tlustration: Three dice are to be thrown. What is the probability of ob-
taining at least two aces?

Solution: The probability given by the sum of the first and second terms
2

A%/

3
of the expansion (é + %) is T
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PROBLEMS

1, Folx ;:o\ms are to be thrown. What is the probability that (a) exactly
two heads will fall up, (b) at least two heads?

2(131 f:htowing 3 dice, what is the probability of no aces?
+ 37 In tossing 10 coins, what is the probability that (a) just 4 of them will

. {berheads, (b) at least 4 will be heads?

. . 3
4. A’s chance (probability) of winning any single game against B is i

Find the chance of his winning at least three games out of seven.

b. If, in the long run, one vessel out of every 50 is wrecked, find the
probability that of 6 vessels expected (1) exactly 5 will arrive safely, (2) at
least 5 will arrive safely.

6. In tossing seven coins, what is the probability for each of the following
number of heads: (a) seven; (b) six; (c) five; (d) four; (e) three; (f) two;
(g) one; (k) zero.

7. In teams of two students, throw seven coins and make a mark in a
scheme such as the following to score the number of heads:

2 heads

0 heads

Continue the experiment until you have scored 128 tossings of the seven
coins. With what frequencies did you get 7 heads, 6 heads, 5 heads, -+ 0
heads out of a total of the 128 tossings?

8. In 128 trials each of which consists in tossing 7 coins, what is the
expected number of ocecurrences (Arts. 164 and 166) of (a) 7 heads; (b) 6 heads;
{¢) 5 heads; (d) 4 heads; (e) 3 heads; (f) 2 heads; (g) 1 head; (k) O heads?

9. Discuss the deviations of the experimental results in problem 7 from
the corresponding theoretical results in problem 8.

10. Five coins are tossed up. What is the probability of an odd number of
heads?
11. A bag contains 5 white and 3 red balls. If 4 balls are drawn out one

at a time and not replaced, find the probability that they are alternately of
different colors,

L1
12. The probability that A will win a certain game whenever he plays 153’

If he plays 4 times, find the probability that he will win, (a) exactly twice,
(b) at least twice, (c) at most twice.

13. Find the expectation of a man who buys a lottery ticket in a lottery

of 100 tickets where there are four prizes of $400, ten of $200, and twenty
of $20.

‘ 14. If ¢ be the probability of failure in a single trial, show that 1 — ¢
is the probability of at least one success in 7 trials,

15. An Italian nobleman, interested in gambling, had, by continued
observation of a game with three dice, noticed that the sum 10 appear
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more often than the sum 9. He expressed his surprise at this to Galileo
and asked for an explanation. Find the probability of (a) the sum 10, (b) the
sum 9, and explain the difficulty of the nobleman.

16. According to the “ United States Life Tables,” 1910, out of 76,675 males
living at the age of 25 years, 21,213 will be living at the age of 75. Out of
79,481 females living at age 25 years, 26,155 will be living at age 75. A hus-
band and a wife are 25 each at the date of marriage; what is the probability
that at least one of them will be living 50 years after the marriage?

17. Which is the greater, the probability of throwing at least one ace in
six trials of throwing a die, or the probability of throwing at least one head of.
a coin in two trials?

18. A machinist works 300 days in a year. If the probability of his meeting

1

with an accident on any particular work day is 1000’ show that the probability

. . 3
of his entirely escaping injury for a year is approximately i www.dbragl'ib
19. Find the probability of throwing six with a single die at least opce”ixi
five trials. ~
o\

3

rary.or
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-is easily shown that

CHAPTER XIX

PARTIAL FRACTIONS

167. Introduction. Early in the study of algebra we added
together algebraic fractions and found the sum to be a single frac-
tion whose denominator is the lowest common multiple pf the de-
nominators. Thus, -

6 - 2 14z +20
s+l % +3 2@ +65+3
It is often necessary to perform the inverse operation, that is, to
decompose a given fraction into a sum of other fractions (called
“‘partial” fractions) having denominators of lower degree. Thus, it
2z 1 + _1
22— 1 z4+1  2z-1
An algebraic fraction is said to be proper when its numerator is
of lower degree than its denominator. In this chapter it is neces-
sary to consider only proper fractions ; for if the degree of the
numerator is not lower than that of the denominator, the fraction
may be reduced by division to the sum of an integral part and a
proper fraction. Thus,
3zt — 32 + 2z 2
T oo T3t = i

We shall assume the possibility of decomposing any proper frac-

tion whose denominator contains factors prime to each other into
the partial fractions of the types

4, B _ _C+D = Ex+F _

ar +b (e +b)” a2’ + bz + ¢ (az® + bz + 0)°
where 4, B, C, D, E, F, a, b, ¢ are real numbers, p, ¢ positive
integers and az? + bz + ¢ an expression without real linesr

factors.* With this assumption we shall show how to decomposé
certain classes of fractions. ¢ '

can be decomposed into

\
168. Case 1. When the denominator can be resolved into faclors
of the first degree, all of which are real and different.

* See Chrystal’s Algebra, Fifth edition, Part I, Chapter VIIL,




CASE 1

’ 1 - . o .
ExampLE. Resolve %ﬁ;m into its simplest partial frac-

tions.
The sum of three fractions

A B C
z + 1 -z + 1+z
will give a fraction whose denominator is z — 5. We, therefore,
try to determine A, B, and C so that
l1—z+62°- 4 B 4 C
z—22  zr 1sz 14z
A — 2)(1 + a) + Bz(l + ) + Cz(1 - z) i
20+ 2 - o) R\ S
Then, www.dbraulibrary.o
1 ~24622= A1 — 2)(1 + 2) + Ba(l + z) + Cz(1 — 2).30)
The two members of (1) are equal for all values of z exeept pos-
sibly forz = 0,2 = 1,2 = — 1. Hence, by Art. 112, Corollary I1,
they are equal for these values. In (1), making ‘ X\

z =0, weobtaind = 1; .\".".
making =1 -weobtain B =35 )
making z = — 1, We obtain Qiﬂﬁ 4.

1l —z-622 1 A
Therefore, : —?‘:—13—' = o +\—\———i——5 1+ 2z
Exercise. Verify by adding ternd$ of Second member.

The values of A4, B, and C could also have been obtained by
arranging the right-hand member of (1) in powers of z and equat-
ing coefficients of like powers (Art. 112, Corollary I); thus,

l-z+622=A4+ (B+Cz+(—4+B-0z
A=1,
B+C=—1,
—A+B-C=6.

These equations when solved yield 4 = 1, B =3 C=-4
In resolving a fraction into partial fractions, for every factor

(az +- b) occurring in the denominator there is a single partial

fractien of the form 4 where A is a constant.
: (axz +b) ‘
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EXERCISES

Resolvgleach of the following into its simplest partial fractions and verify
your result when the answer is not given:

o‘s

N 1 . . .x3—4x—4.
« Wz +1) ‘ Z— 4

’
TS g 2414
2rzx—2 : 42 — 1
T ' ) 2+133+6
"6t —zx—1 "+ D+ 2)(z—2)
@ 62° — 72 — 13z — 20 °
4 2 —Ox + 9 : 3 — 8z — 3
p, Wot2 T LI
* 5 — 24z — ba? : 'a:3+6£+11:c+6
o J4 = 4Tn jg, 1828 + 1054+ 1
" 4x — 1422 - " 6+ 52tz
169. Case II. When the denominator can be resolved into redl
linear factors, some of which are repeated. _

(@ — 1)

-
Ezxample: Resolve

fractions.
The sum of four fractions »
A B C D :
ettty
will give a fra.ctlon whose denominator is a:2(a; - 1)2 we therefore
try to determine A, B, C, D so that '

©-82-44+1_A B_C , D
WZ; a?_*-:z;—l_}-'(:v—l)2

-

Then,

60° — 8902-4:ag-1-1_Aa,-(aa—1)2+B@-1)2+Ca;2(x—1)+D’f2
=(A+02 4+ (-24 4+ B-C+ D)
+ (4 — 2Bz + B

Equating coefficients of like powers (Art. 112, Corollary I) We
have,

A+C =6,
-24+B-C+D=-
A-2B= -4

into its simplest partial




CASE III

Solving these equations for 4, B, C, D, we find

A=-2 B=1, C=8 D= -5
Hence, .

62° — 82— 4 +1_ -2 1 8 . 5
= T +x,—-1“(x—1)2'

¥z — 1)2 T 7
In this case, for every factor (az + b) which occurs« times there
are r partial fractions of the form
A A A
ay + b (az + b)2 * (ax + b)”
" where A;, 4,, - -+, A; are constants,

EXERCISES A\
Resolve. each of the following into its simplest partial fracti‘gﬁ’g‘ﬁn%b%}%.hrary

the result. .. g . A\
. 2245 #—322+ 10z —2 A

[EETermaTy S rne-1n &

g 21 . 2x‘+3x"—7xz"’*+34.
* 2x(x — 1)2. - 2z 431) V.

222 + 2 i
@+ PEIP
W LW -2+ 2
1222 — 27z + 16 308 — 292 + 190 — 4.

S o Moy

522 —z— 1
2z — 1)
2¢ — 8

8.

9.

170. Cask IIT. When the“denominator contains quadratic fac-
tors which are not repeated and which cannot be separated info real

linear factors.
1122 + 1l — 2

o T o~ into a sum of - partial
(222 + 2 + 1)(3z — 2)

Ezample: Resolve
'

P tlUs-2 _ Ast+ B, C
Cr+z+1)Bz—-2) 28 +z+1 3z—-2

“Then 1122+ 11z —2= Az + BBz -2 +C2*+z+1) >
= (34 +20)s*+(—~24+3B+C)z—2B+C

fractions.
Let

EQUating coefficients of like powers of z, we have
34 + 2C =11,
- 24 + 3B+ ¢ ="11,
- 2B + C= - 27
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whence 4=1 B=3 (C=4, .

Nl lle-2 _ a+3 4
A2 +z+1)Bx—-2) 222+z+1 3z -2

2\

Tovthis case, for every factor az? 4+ bz 4 ¢ occurring once, there.
. Az + B
az? + br + ¢

and

MNsa single partial fraction of the form » where A and

B are real numbers.
!  EXERCISES
Resolve each of the following into its simplest partial fractions and verify
the result.
32 — 2 . 61:2—}—4:0—!-10.
@4z + DE+1) - T+ 224+ 5
s+1 . 2+ 1 )
- DE2+1) . @+
2zt + 2 22 — 1.

- #»+z
x5+z“+5x3+4x2+3x+2'
@+ D@2 +2+ 1

x? + 2 + 9‘ ’

1 —

8
9.
10.

171, Case IV. When the denominator contains quadratic factors
which are repeated. . ‘
162t — 2023 + 1422 — 6z + 2

Ezxample:  Resol
A (R 7T o7 g

into partial

fractions:
Solution: Let .
160 — 202° + 1422 — 62 4+2 A Bz +C Dz+E
T0-2)@E s H 1. T 1-% Tar—riiT @e—at
Then  16z* — 2023 + 1422 — 62 + 2 \
=A(22° ~ 2+ 1)+ (Be+C) (1 — 22)7222 — 2+ 1) + (Dz + E) (1 —2)
= (44 — 4B)z+ (— 44 + 4B — 40)s*+ (54 — 3B + 4C — 2D)2*
+ (=24 + B -3¢+ D - Bz + (C+ B
Equating coefficients of like powers of z, we have
) 44 — 4B = 16
~ 44 4+ 4B 40 = — 20
5A — 3B +4C — 2D = 14
~24+B-3C+D—-2E=-6
A+C+E-=2
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Solving these equations for 4,B,C, D, E, we find 4 = +1,
=—3,(C=1,D=2E =0,

Hence,

1624 —202°+ 1422 —62+2 1 3z~1 2z
(1—2z)(2z*—2z+1)? 1-2z 222—241 " (222—z+1)
In this case, for every factor (az? + bz + ¢) oceurring r times
there are r partial fractions of the form

Aqx + B, Asx + B, . Arx + B,
(@z* + bz +¢)' (aa? + bz + cf  (az? + bz + o)

where Ai, As,.--+, A,, By, B, -, B, are real numbers. )

From -the corollary of Art. 115, page 152 we know that any
polynomial f(z) with real coefficients can be expressed as a produ(i', Ny
‘of real linear and quadratic factors. Hence, if the fﬁvc‘{(gvrsdgf atl,fléb'rary‘i (
denominator are known, any quotient of two polynomials*with
real coefficients can be decomposed into its partial fractions by
the methods of this chapter. ) xx\

o L\

EXERCISES O

Resolve each of the following into its simplest partial{ffactions and verify
your result when the answer is not given: : \'~

L 2+ 42t 4z pr2 . 4 18 — 98
) z(z? 4 1)2 : (\:1:\'2)(:1:2 — 2z + 4)2

T 4220+ 2% + 50+ 1 22t 4 2
G VY o S )

a2 —bp—4 ), 62+ 1520+ 202 + 232 + 16
e —D@E FzFIE . 22 + 8z + 4)

8¢ — ot + 428 22 + 1
R (N
g ¥ — 2+ brt— 428 + 322 + 5z + 16

) o(l — o)z + 4]
9 32 +322 —24+1 — 342+ 1

3z + 1)2 10 W

N
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CHAPTER XX

DETERMINANTS

172. Extension of the determinant notation. Determinants of
the second and third orders were used in Chapter V in the solution
of systems of linear equations in two and three unknowns; and a
determinant of the second order was so defined that the pair of
values

Ct b] a €

¢z b as  C
poia Bl e el
a1 b11 ay bl

a: b as by
satisfies the system of equations,

ar + by = ¢,
0 + by = ¢,

(451 b]_

provided
gz by

# 0. @

Analogously, a determinant of the third order was so defined
that the set of values

d1 b1 C1 ax d]_ (%Y as, b1 dl
d b o g dy o a; by s

ds by 3| - a; ds ¢ a; by ds
gl bl s s d ol e b D
a b oo a b ¢ a b

a b ¢ as by ¢ as b ¢
a; by o az b: ¢ as b3 G

satisfies the system of equations

oz + by + ez = d;,
0T + by + ¢z = ds,
ar -+ b3y + ¢z = d3,
ax b1 C1
a by ey #0.

as b3 C3
‘ 230

provided
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The determinant notation is extended in the present chapter to
the solution of systems of linear equations containing more than
three unknowns, and to certain problems of elimination.

It will be observed that each term in the expansions,

a b
a: b: = aby — aby, (5)

C2 | = Qibacs + azbscr + asbics — aghacs — asbics — arbscs, (6)
C3

of determinants of orders 2 and 3 respectively, consists (except
for sign) of the product formed by taking one and only one element ¢
from each row and column. This fact suggests the extension of o\
determinants to represent certain expressions in n? ‘glgg}%abﬁ’l}éry
means of an array, iy

a; b]_ Ci d1 e l1

g by ¢ b b

as bs ¢ dyro-ly

as b4 C4 d4 v l4

Gn by Cn dpe--l,

{2
where the expansion is to consist of efms’ which are products
formed by taking one and only one glément from each row and
column, and where the signs of term§are to be consistent with the
special casesof n = 2 and n fo3f(ﬁrt. 172).

A square array such as (7) is/called a determinant of the nth
order. The diagonal from the upper left-hand to the lower right-
hand corner of the square array is called the principal diagonal
of the determinant, and the product, abscs - - - L, of the n num-
bers in this diagonal is called the principal term of the determi-
nant,. . -

173. Meaning of a determinant. In order to give the mean-
ing of a determinant, we introduce the notion of an inversion.
If, in an arrangement of positive integers, a greater precedes a less,
there is said to be an inversion. Thus, in the order 12543, there
are three inversions: 5 before 4, 5 before 3, 4 before 3. In 2341576,
there are four inversions. When applied to any term in the expan-
sion of a determinant such as (7), we say there is an inversion if
the order of the subscripts presents an inversion when the letters

3
!



232 DETERMINANTS

(apart from subscripts) have the order abed - - - I of the principa]
diagonal. . With respect to determinants of orders 2 and 3, it may
be observed that the number of inversions is even when the term
is positive, and that the number of inversions is odd when the
termiyis negative.

~\Consistent with these conditions, we lay down the following

3

DzriniTiON. A square array of n* elements is called ¢ determi-
nant of the nth order. It is an abbreviation Jor the algebraic sum of
all the products that can be formed
(1) by taking as factors one and only one element from each column
and each row of the array, and
(2) by giving to each term a posttive or a negative sign according as
the number of inversions of the subscripts of the term is even or odd,
when the letters have the same order as in the principal diagonal.

It may be added that if in any case the number of inversions
in the principal diagonal is different from zero, the sign of a term
is 4+ or — according as the number of inversions in its subscripts
differs from the number in the principal diagonal by an even
or odd number. Since the subscripts fix the signs of terms, it may
appear necessary to carry subscripts along in any numerical case,
but we shall derive other modes of expansion (Arts. 174, 175)
which make this unnecessary. We shall, in general, use the Greek
letter A to represent a determinant.

ORAL EXERCISES

How many inversions are there in each of the following arrangements?
1. 1243. 3. 1432, b. 21457368.
2. 1423. 4, 41352, 6. 21657348.

TrEOREM. The expansion of a determinant A of order n contains
n ! terms.

Since the number of terms is the same as the number of permu-
tations of the subseripts 1, 2, 3, * -+, n, the number is n ! (Art. 153).

174. Useful properties of determinants. The following theorems
embody useful properties of determinants.

THEOREM 1. If in o determinant A corresponding rows and

columns are inierchanged, the expansion is unchanged.
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@ b o a G a3
Thus, @ by c|=|b b byl
a; bs ¢ a & ¢

TaEOREM II. If two rows (or columns) of a determinant A are
interchanged, the sign of the determinant is changed.

Let us take for simplicity a determinant of the third order, but
the argument used will clearly apply to any determinant. Thus,

a b1 Cy ] as by ¢
a by e|l=—|a b |
ags b3 C3 ay b1 C1

In the first place, interchanging two adjacent rows will simply
interchange two adjacent subscripts in each term of theexpdhsiodibrary.q
This will change the sign of every term of the expansion. Con§§c:1er'
next the effect of interchanging any two rows (or eolumng) sepa-
rated by m intermediate rows. The lower row can be blzo?ght just
below the upper one by m interchanges of adjacenf, rows. To
bring likewise the upper row into the original position of the lower
row, m + 1 further interchanges are necessary:;” Hence, inter-
changing the two rows in question is equivalénb to 2m -+ 1 inter-
changes of adjacent rows. Since 2m + L ié~an odd number, this
process changes the sign of the determi&n’t.

TrEOREM III. If @ determinqn(fﬁ' has two rows (or columns)

identical, its value is zero. <Y

If we interchange two rows, we obtain, by Theorem II, —A.
But since the interchange of two identical rows does not alter the
determinant we have A= - A,

that is, 2A =0,
or A=0.

Taeorem IV. If all the elements of a row (or column)-of A are
multiplied by the same number m the determinant 1 multiplied by m.
) For, one element from the column multiplied by m must enter
nto each term of the expansion of A.

TaEOREM V. T 'f one row (or column) of A has as elements the sum
of two or more numbers, A can be written as the sum of two or more
determinants. That is,

i
t

g
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ata +a'"ba a by a' b a" bie
A=laqt o +a'hel=abe|l+ ebhe|+|a" bel
Y} as’ + aa" bs ¢3 az bz c; as’ by cs a3’ by e3

Thig)theorem is evident for this special case, since each term in

’the\ expansion of A is evidently equal to the sum of the correspond-
~ing terms of the three determinants. Similarly, we can prove the

general case.

TaeoreM VI. The value of any determinant A is not changed if
each element of any row (or column), or each element multiplied by
any given number, m, be added to the corresponding element of any
other row (or column).

By Theorems IV and VI,

L+ maz ay G a az as Qs 3
by +mbs by bs| = |b by |+ m* | bs by bs,
atme & €1 Cs €z €z €3
ax as
by b bs|+ 0, by Theorem III.
G € ¢
Likewise, the theorem can be proved for a determinant of any
order.
The theorems of this article can often be used to good advan-
tage in the simplification and evaluation of determinants.

Nlustration 1.
20 17 2
Evaluate {15 12 81-

25 22 -6

Solution: Factor out 5 from the first col- 1
umn, and 2 from the third and we have . 4| (Theo.IV),

Next, subtract 4 times the first column 1
from the second and we have . (Theo. VD).

Subtract the second column from the first
and factor 3 out of the resulting first column

and we have
Illustration 2.

a b+e 1
Evaluate (b a+¢ 1.

_ c at+b 1

* This notation means that the determinant is multiplied by m.
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Solution: Add the first columnto |@ a--b+¢ 1
the second and we have b a+b+c 1 (Theo. VI).
c a+b+c 1
Factor out (@ + b 4 ¢) from the all
second column and we have (@+b+¢)fbl11|=0 (Theo. II).
cll

EXERCISES
Find the value of each determinant.

6 4 4 -1 6 5
1.6 3 -1~ 2.(—-2 3 3|
3 7 -1 —10 8 10

175. Expansion by minors. If we suppress both the row and

"D

column to which any element, say ¢, of the determi%}?&})%%gfélly (e

the unsuppressed elements form a determinant called the firsth
minor of ¢, and which we shall denote by the capital letter* C..
Thus, in K

a; b1 1 ne

“ b oo &
asg b3 C3

ar € £
. e \

the minor of b, is
R as C3 N8

|

\

A determinant A may be expresse&%n terms of the elements
€y, 2, * -+, ¢, of & column (or row) and “their first minors as follows:

1. Form the product of each dlement such as ¢, in the column by the
corresponding minor Cy. .

2. Give each of the products thus formed a positive or a negative
sign according as the sum of the number of the row and the number

of the column containing cx 1s even or odd. ' .
3. Take the algebraic sum of these results. This sum 1s equal to A,

ay bl C1 bv
Thus, a by ¢ =],
asz b3 C3

[% bhh a
e Qs b o + as bl .
b c¢s bs ¢ y  C2

If we can establish this theorem, we have a systematic method
for expanding any determinant, since the first minors of ‘A are
again determinants which can be expressed in terms of their own
minors. This process can be continued until we have the expan-
Slon of A.




236 DETERMINANTS

The proof of the theorem involves two steps:

(1) Thecoeflicient of the leading element a, in the expansion of
A is the'wttinor, Ay, of a;. For, A, is a determinant of order n — 1
in elémaents by, bs, - - -, by, - - - and its expansion therefore containsa
’teﬁn for each permutationof 23 4 - - - n. As to the signs of terms,

¢“the number of inversions is not changed by prefixing a,.

(2) The coefficient of any element cx in the expansion of A is its
minor C;, with a 4 or a — sign, according as the sum of the number
of the row and the number of the column containing ¢, is even or
odd. If ¢ is in the Ath column and kth row, we can bring it to the
leading position (column 1, row 1) without disturbing the relative
positions of elements not found in column % or row k. This is done
by interchanging the column in which ¢, stands with each preced-
ing column in turn until ¢ is in column 1, and the row in which ¢
stands with each preceding row in turn until ¢; is in row 1. In
making these changes, the sign of the determinant is changed,
h—1+k—1=h+k—2 times (Art. 174, Theo. II). Hence,if
A’ denotes this determinant with ¢x as the leading letter,

A7 = (= DME2A = (= 1WA,

Let €’ be the minor of ¢, in A’. By (1), the sum of the termsin
the expansion of A’ which contain ¢ is ¢,C’;. Since the minor of
¢rin A’ is the same as in A, the coefficient of ¢, in the expansion of
Ais (= 1)"*C,. This establishes the second step.

» EXERCISES
Expand and find the value of each of the following determinants.

12 1
2 3 —4|

2
-1
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Hint: Subtracting eolumn 4 from column 1 we have by Theorem VI, Art. 174
-3 2 4
0 5
0 8
0 2

A= =-3(8

4
7
1 2
-2 4 -1
10 2]
-3 5 —4

[

2
-3
-1

1

(S0 - V]
W= O O NN

7
1
5
7

™
Ny Y

1 1 1
10. Show that A=|a b ¢ | = (a ~ b — c)(c — a). g
a? b c? ,&NY
Hint: When @ = b, two colurmns are identical so that A\sénishes, and
by the factor theorem, Art. 106, @ — b is a factor of A. £ ‘ \
Factor each of the following determinants: \ }
1 a b e b ¢ AN |e aa
1.1 a | 12. [@ & |- ()18 |a b b
1 a® B a B I\ a b ¢
176. We shall now establish a théorem of determinants which
. W \ ¥ 3 . . .
18 useful in performing the elifninations required in the solution
of equations in two or more unkfiowns.

TrEOREM. In erpanding o determinant by minors with respect
to a certain column (or row), if the elements of this column (or row)
are replaced by the corresponding elements of some other column (or
row), the resulting expression vanishes.

For example, we have, by Art. 175,
O b1 C d1

A= |® by e ds = @Ay — BAs + wds — wmAs
as b3 C3 d3

as by ¢y ds
We are to prove that
b1A1 - b2A2 + b3A3 - b4A4 = 0.
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The left member of (1) is equal to the expression of the de.
terminant derived from A by replacing the column of o’s by the
b's with},orresponding subscripts. But this gives a determinant
with\two columns identical, which therefore vanishes (Art. 174,
Theorem ITI). The same method of proof can manifestly be ap-

. plied to a determinant of any order.

7

177. Systems of linear equations containing the same number
of equations as unknowns. In Chapter V, we used determinants
to express the solution of simultaneous equations containing two
and three unknowns. We are now in a position to make use of de-
terminants to solve a system of n linear equations in # unknowns.

For simplicity of notation, take n = 4, and consider the system
of equations

ar + by + ¢z + dw = ky,
@t + by + ¢z + dyw = ky,
sz + by + ez + dyw = ks,
asr -+ b4y + ¢z + a’4w = k4,

to be solved for z, y, 2, and w if a solution exists. It is conven-
ient to call the determinant of the coefficients of the unknowns,

a; bl C1
A = a b ¢
as b3 C3
a4 b4 Ca
the determinant of the system of equations.
CaseI. When A = (.

As above, let Ay As, -, By, By, - - - be the minors of a1, @z, **
b, by, - - - respectively. Multiplying both members of (1), (2), 3),
and (4) by A4, — 45, 4, and — 4, respectively, we obtain

Az + Aby + Asciz + Adw = Ajh, (5)
~ Asan — Abyy ~ Ao — Agdyy = — Aok, 6
Asasw + Aby + Asosz + Agdgw = Ak, (7)
= Asar — Ady — Az — Adaw = — Adka @®

Adding (5), (6), (7), (8), we obtain A for the coefficient of 7

(Art. 175), and zero for coefficient ns (At.
176). That is, lents of the other unknow

A T = A1k1 - Agkz -+ A3k3 - A4k4- (9)
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Similarly, A -y = — Biki + Bsks — Bsks + Bk, (10)
A. z= Ciky — Coks + Coks — Ciky, - 1n
and A-w — Diky + Doks — Dsks + Diks. (12)

If, in A, we replace the a’s by &’s and expand, we have the right-
hand member of (9). Similarly, replacing the b’s, ¢’s, and d’s re-
spectively by k’s, we have the right-hand members of (10), (11),
and (12). It follows that

k1 bl Ct d1 a1 kl C1 d]
ke by o dy a ky € dy
kg b3 C3 d3 as ks C3 d3
k4 Cq d4 as k4 C4 d4

A A

a; kl d1 a4 C1

as ke da 22} Co

as ks ds as c: ks
a4 by ds [223 Cy k;i PR

Z"—‘———A———r w=——-A——iv~

N\

is a solution, and the only solution, of (1), (2), (3),"(4). )

Hence, to obtain the solution of any systes ‘of’n linear equations
containing # unknowns when A, the determinant of the system,
is not zero, we apply the O

TeEOREM. Any unknown s ggda‘l‘ to a fraction (1) whose de-
nominator is the determinant of the-system, and (2) whose numera-
tor is the determinant formed from the determinant of the system ‘by

_substituting for the coefficients of the unknown sought the correrspor'zdzng
known terms with that sign attached to each known term which it has
when on the side of the equation opposite the unknowns.

Case II. When A = 0. ‘

If a solution exists when A = 0, it cannot take the prece.dmg
form, since division by zero is excluded from algebraic operations.
While the theory becomes too complicated in this case to l'>e pre-
sented in full here, certain particular cases may well be cons1de‘red.

As a rule (subject to certain exceptions), a system of equations
has no solution when A = 0. For example, the system

3x+4y=5,
6z + 8y =9




240 ’ DETERMINANTS

has no solution. Likewise the system
N\ z+y—z=25,
N dz +y—22=9,
N\ br+ 2y — 32 =1
hasyho solution.

3 ‘A system may, however, have an infinite number of solutions

when A = 0. For instance, the equations
z+y—2z=0, (13)
dx+y — 22 =0, (14)
50+ 2y — 3z =0 (15)
constitute such a system. These equations are manifestly satis-
fied by = y = 2 = 0. This is called the trivial solution. To
obtain other solutions solve (13) and (14) for z and y in terms of z.
This gives
r=132, y=4% (16)
These values of z and y satisfy (15) as well as (13) and (14). Hence
any value assigned to z with the corresponding values z and ¥
obtained from z = 1z, y = %z satisfies (13), (14), and (15). Since
z may have any value, there is an infinite number of solutions of
the system in question.
Systems with an infinite number of solutions may be more
generally illustrated by the homogeneous * equations
ar + b1y + ¢z = 0, (17)
@& 4 boy + oz = 0, (18)
a5z + by + ¢z = 0, 19
ax b1 C1
when A=la b =0, (20)
a by ¢

but some minor of A is not Zero, say M 21 #= 0. @)
2

. To prove that (17), (18), (19) have an infinite number of solu-
tions, substitute in (19) the values

I — (12 bll a — 2

ez by a: — ez
= -

(%51 bl v= ay b1
[22] bZ ay b2

quation is one in which all terms are of the same degree i

H

* A homogeneous e
the unknowns,
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which satisfy (17) and (18) when condition (21) is fulfilled. This
substitution gives, after clearing of fractions,
ay b1 €1
' =z|a b o,
b3 C3

which, by (20), vanishes whatever value be assigned to z. Hence,
z can take an infinite number of values, each of which with the
corresponding z and y satisfies (17), (18), and (19).

e b a ¢ a b
—zb +o2cs| +

— Za;
302172 3(1202 a; by

178. Systems of equations containing more unknowns than
equations. Consider first the single equation

3xr+5y—6=0 Q.
with two unknowns. It is clear from our work on gra ]glls'al(,[)fbrar )
equations (Art. 27) that there are an infinite number 6f"] pairs ¢ ]fl waryy
values of = and y which satisfy this equation. \

Consider next the two equations, A
3z —4y —22+1=0, ¢\J 2)
ety —z-6=0 SN @

with three unknowns. N o

We may solve (2) and (3) for z and y in ten}ﬁ of z. This gives
2 -1 - N\
z+6 31 0z + 21, @)

3 —4 25
4 .3‘Lf %
}3 2z — Y ‘
4 e+6] s+ ®)

¥=73 4 25

4 3 '

Any value assigned to z and the corresponding z and y obtained
from (4) and (5) satisfy (2) and (3). Hence, the system bas an
infinite number of solutions. - . o

The main point to be brought out by these illustrations is that,
in general, from n equations containing more than = unknown_s,
we may solve (Art. 177) for some selected n of the unknowns i
terms of the remaining unknowns. We are then at liberty tco
assign any values to these remaining unknowns-, and thus optaln
an infinite number of solutions. The problem in the exceptional
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cases in which it is impossible to solve for a selected set of n un-
knowns is.koo complicated to be treated here.

1794 Systems of equations containing fewer unknowns than
equdtions. Elimination. In a system of n linear equations taken

at random, with m unknowns, m < n, the equations are usually
{inconsistent, that is, the solution of m of the equations will not
( & satisfy the remaining equations. However, under certain con-

ditions, all of the n equations are consistent.*

ORAL EXERCISES

1. Give three linear equations in z and y that are inconsistent.
2. Give three linear equations in z and y that are consistent.

We shall restrict our discussion of systems containing fewer
unknowns than equations to the important case in which the
number of equations is one greater than the number of unknowns.

Consider the equations

o+ by +c =0, ey
et + by 4+ 2 = 0, )
azx -+ b3y + C3 = 0. (3)

If these three equations are consistent in case aiby — @b1 # 0,
then

C1 bl I G G

¢ by a: ¢

— = e
a b a b

a b a b
which satisfy (1) and (2) must satisfy (3). This requires that

C1 bl a ¢
0l by b 1% O 0
— Qg — by ———— - ¢; = 0.
271 b1 ’ ay b1 + :
a by as by
Clearing of fractions, and interchanging columns in

obtain

C bl

2

, We

a3b1 C _b3(11 C1 Ca,l bl—O
by ¢ as ¢y *la, b, ’

* Two or mor i ;
colution. © equations are consistent (Art. 27) when they have a commof
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a1 b1 C1
or, as by el = 0, (Al‘t 175) (4)
az b3 C3 R

as a condition to be satisfied in order that equations (1), (2), and
(3) be consistent. The unknowns z and y are eliminated, and the
determinant in (4) is called the eliminant of the equations (1), (2),
and (3). Stated in words, in order that three linear equations in
two unknowns have a common solution, it is necessary that the
eliminant of the system shall be equal to zero.

The method used for three linear equations in two unknowns
can be extended to any number n of linear equations in n — 1
unknowns. Thus, we have the

TrEOREM. The determinant (eliminant) formed of tkﬁ\ﬁwﬁm&hbrary
of the unknowns and of the known terms must vanish in order _that*
the n equations in n — 1 unknowns have a common solution.

While the vanishing of the eliminant is a necessaryy cbndltlon
for the existence of a common root, it is not a sufﬁcie\nt “condition
as is shown by the following example.

Take the system of equations

®)
(6)
™

Here,

but any two of the equations are inconsistent.
ondition, we assumed that
This condition is satisfied

In establishing the above necessary ¢
two of the equations have a solution.
by no two of equations (5), (6), (7).

EXERCISES -

Solve by using determinants.
1 42 — 3y =5,
8 +y =17
2.8 4+4y—-22-5=0,
4z — 3y +8+4=0
2z + 8 — 8 = 5.

1
-

1
Lo
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4 3r+2y+42—w=13 b. z+y+z4+w=0,
Spty—z+2w=09, 3z — 4y + 5z + 6w = 1,
2x+§y-—7z+3w 14, T — 2y + 3z — 4w = 29,
(Ac— 4y + 3z — 5w = 4. 20+ 3y — 42— 5w =0,
“6\Find a value of k such that
; kx—3y— 5=0,
8+ y—17 =0,
kx 42y —10=0
are consistent equations. Can k take more than one value?
by

[& By Art. 179, it follows that |
a; by

the two equations

= 0 is a necessary condition that

@z 4+ by = 0, (a, #0)
BT 4+ by = 0 (a2 2 0)
be consistent. Show that this condition is also sufficient for this special case.
8. Discuss the number of values of z, ¥, 2 which satisfy
z+3y—2z=0,
—2y+2=0,
S5z +y+ 2 =0,

and find the ratios 2 :y : z of corresponding values apart from the trivial
solution z =y = 2z = 0,

Prove each system of equations inconsistent or find a solution of the

system.

9. z4y=7, 10. 3z + 4y = 25, 1. z—y=1
z 4 2y = 10, e4+y=7, 3z —y =5
3z + 4y = 25. z+2 =1L 2z + 3y =T

12. If (=, y, 2) is 2 non-trivial solution of the system
3z — 4y = Tq,
4z + y = 3z,
show that Tiyiz=1:—1:1.

13. Eliminate z and y from the equations y = muz + by, y = max + by
Y = ms% + by, and show that the eliminant is zero if by = by = by

Write the eliminant of each system of equations. Apply the theorem of

Art. 179 to test whether the system satisfies our necessary condition for 8
solution. In case there is a solution, find it.

4 2247y =1, 16. z4+y+2z=4,
T4y =3, 2z + 3y — 4z = 17,

2z — 3y =11 6z — 3y — 3 = 0,
z4+2y+ 32 =2,




CHAPTER XXI

LIMITS

180. Absolute values. The numerical value of z, that is, the
value of z without regard to sign, is often represented by the sym-
bol |z | which is read ‘““absolute value of z.” In dealing with
absolute values in this chapter it is convenient to emphasize two
properties of absolute values.

1. The absolute value of a sum is never greater than the sum of
the absolute values of the numbers. (See Art. 68, exercise 13.) _ 5

www.dbraubibrary

For example, | —7+3|=|-7]+13],
or 4 < 10. -

2. The product of absolute values is equal to thgtabsolute
value of the product. X\

For example | —7]-18]=1-7-3] O
or 21 = 21. O\

Ny Y

181. Definition of a limit. A variabld2"ls said to approach a
constant a as a limit if | a — « | becomés nd remains less than any
assigned positive number d when the'variable « takes all values for
which it is defined in the neighbwl@@d of a.

We have had many illustrativhs of limits in elementary mathe-
matics. Thus, in geometry the area of a circle is considered as
the limiting value of the area of the inscribed regular polygon as
the number of sides is indefinitely increased. In this case, the
values of the variable are the areas of the inscribed polygons as
the number of sides is increased. Again, as we annex 3’s to the
decimal .3333- - -, its value runs through the sequence of numbers
3, .33, .333, ete., which can be made to approach as near to § as
we please. In the geometrical progression

1+3+3+8+ 5
8., the sum of the first n terms, runs through the sequence
L, %5 B

“and approaches the limiting value 2.
245
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The essence of the definition of a limit lies in the words “be-
comes and remains less.” For example, if £ runs through the
sequence of values »—onH — 5L -4 T

 the difference | 1 — z | takes on the values

N\ 1 8 1 4 1 5 ,,.
: N %) 2 By By 4y o

and becomes less than any assigned number but it does not re-

7 main so. In this case we eannot say that z approaches 1 asa
limit.
To indicate that z approaches @ as a limit, we use the notation

z—a, or limz = a.

182. Infinitesimals. A very important class of variables con-
sists of those which have the limit zero. They are called infinitesi-
mals. The area between a circle and the inscribed regular polygon
as the number of sides increases, the weight of the air in the re-
ceiver of a perfectly working air pump, and the difference 2 — S5,
where S, is the sum of the first n terms of the series 1 + 3+
% -+, are examples of infinitesimals.

TEEOREM. If 4 —0and v— 0, and | X | and | Y | are always
less than some positive constant k, then Xu + Yv — 0.

In other words, if u and v are infinitesimals, then Xu -+ Yvisan
infinitesimal.

Let d be any positive number however small. Since lim u = 0,
andlimv = 0, | % | and | v | will ultimately become and remain less

than 2% For these values of u and v, we have

d
1X]-lul<|x |2
and from (2) Art. 180

| Xu| < 57—

X|d

In a similar way
| Y

[ Yv| < 3

Adding these two inequalities,

| Xul + | yo) < UXLEIY ),
By hypothesis, [X|+ |7 | < 2k,
hence, | Xul+ | Yv| < d.
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But from (1), Art. 180
[ Xu+ Yo|=|Xu|+ | Vo]
or | Xu + Yv| <d.
Since d may be chosen as small as we please,
Xu + Yv—0.

This theorem may be extended to any number of variables.
CoroLLARY. Ifu — 0 and v — 0, and C is a constant, then

Xu+ Yo+ C—C.
Ezamples: If uw — 0 and v — 0, then
1) Tu+ 3v—0, Q¥
2 8§ — 3u + 5 — 8, www.dbray}iihi‘éry
(3) at+b—(u+v)—a+b

4) (@ —u)(d—"v) =ab—bu —av+ w = ab — (a — u)p — bu';-»al.r.’

. <\
183. Theorems concerning limits. The following, tl{egrems fol-
low directly from the theorem of Art. 182. < N

TrEorEM 1. The limit of the sum of two varigb:leé is the sum of
their limats. O

Let the variables be z and y, and let,

Then,
where
Adding, wehave z+y=a+b— (u+71).
From the corollary of Art. 182, @ +b — (v +2) ~a + b,
or lim(z+y) =a+b=1lmz+limy.

Cororrary I. The limit of the sum of any finite number of
variables is the sum of their limits.

Cororrary II. The limit of the difference of two variables is
the difference of their limits.

Tarorem II. The limit of the product of two variables is the
product of their limits.

Using the notation of Theorem I,

zy = (@ —u)b—1v) = ab — [(@a —up + bul.
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From the theorem of Art. 182,
Q (@ — u)r + bu — 0.
Hence)y, im zy = ab = lim z lim y.

. CoroLLarY 1. The limit of the product of any finite number of
~wgriables is the product of their limits.

CoroLLARY II. If n s a positive integer,
lim z# = a* = (lim z)~.
CoroLrARY III. If ¢ is any constant,

lim ¢z = ¢ lim =.

184. Both numerator and denominator with limit zero. If both

the numerator and the denominator of a fraction %; approach the

limit zero, we have a rather curious result, as is shown by the
cases which occur in the following example.
In the fraction g let ¥ approach 0 through the sequence of

values
1 1 1 1
5 % 3 g
Let z approach 0 through one of the four sequences:
11 1
(a) Z’@’@"“’%‘"”
1 1 1 1
b . SUN
® VB ViVE Ve
E kb k k
(¢) 2 o g (k = any constant.)
1 1 1 1 1
(d) 57_?)"2—3)'—’21) ’iﬁ,“.
1

Cask (a). We have here lim%; = limit of %—n as n increases with-

2n
1

s e 4R
out limit. Since — reduces to 51—; lim £ becomes lim 51— = 0.
—.l— n y {2
2n
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Cask (b). Here g passes through the sequences of values

which increases without limit.
CasE (¢). In this case lim 5 = k.

Case (d). Hereg takes alternately the values + 1 or — 1 and

approaches no limit.
We see then that if « and y both approach 0 as a limit, their
ratio may approach any number whatever including 0, may in-
crease without limit, or may oscillate between two fixed numbers.
WWW. dbrauhbrary
185. Infinity. If the numerator of the fraction is constantyer
has the limit a(a  0), while the denominator has the'kmlt 0,

then Z increases without limit and is said to beconde) infinite.
y L\
lim 2 AN

This is usually expressed by writing y=0 5 =

It is not, however, to be inferred that 1nﬁnit37 is a limit. The
variable = " in the case just given does no\approach a limit. Ifzis
a variable which increases without Iimlt the various expressions

“lim z = ,” “z—00,” “z = oy should not be read “z ap-

proaches 1nﬁmty” or “z equals ‘infinity,” but “‘z becomes infinite,”
“z increases without limit.” Infinity is not a number in the sense

in which we are using the term.

lim 1 = 0.

TaroREM 1. n— 3

z
Let d be any assigned small positive number. Letn = - where

i 1_4d
% 1s any number greater than 1. Then - =~ < d. (IV, Art. 68.)

That is, 1 becomes and remains less than any assigned number.
n

Treorem II. If | 7| < 1, 0% ™ =.0. 1
Since | 7 | < 1, it can be written in the form |r| = 1% where

h is positive. Hence,




(“Fherefore [r] <

LIMITS

1 1
1+ h)» = 1 + nh + positive terms
(By Binomial Theorem.,)

e
N\

1 1
1+ nh < nh

By Theorem I of the present article and Corollary II1, Art. 183,

lim 1 0.

n——vooﬁl=

lim _
Hence, neo | 7| = 0.

Since r* = & ||, we have

lim _, _
n—o0 r 0'

lim _ar"

CoroLrary. If |r| <1, 0 —

=0.

Exercise. Let y approach 0 through the sequence
0.1, 0.01, 0.001, ---.

Show that the fraction g may be made to approach any number as 8

limit, may increase without limit, or may oscillate between two numbers.

186. Limiting value of a function. Let f(z) represent any func-
tion of z. If x approaches a limit ¢ and at the same time f(z) takes
on corresponding values such that

lim f(z) = 4,
we may abbreviate and write

B

rma (@) = A,
which reads, “As z approaches a as a limit, f(z) approaches the
limit A”’; or, more briefly, “ The limit of f(z), when z approaches
a,is A.”

If fla) = 1 1),

the function is said to be continuous for z = a.
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187. Indeterminate forms. To find the value of the fraction

2 when z = 2, we substitute and find the value to be 4.

-But when 2 = 1, by substitution we find g’ a meaningless symbol.

22+zxz—2

z~—-1 =zt

We may write
but since division by zero is excluded from our operations, this
simplification does not hold for z = 1. But for every other value
of z, however near to 1, the division is possible. Hence, letting =
approach 1, we have

lim 22+ —2 _ lim

z—=1 -] z—1

. P -2 .
Although substitution of x = 1in % gives Us a meaning-

(x+2)=3. www.dbrag.l'ihi'éry.@:'

™
3

less symbol, it is convenient to assign a value tq\_k t\}i’é}raction.
2 -9 g2 -9
When z = 1, we define %— to be ;1“1—-7:-1— = 3.
2+ 2
K2ak
for all values of z. In general, if f(z) is\é fraction which forz = @
N\

0 A\ .
takes the form 5, we define : /

@) to be ™ f(z).

r—a

The student should note
that this is not a necessary
definition of f(a), but merely
a convenient one. The con-
venience arises from the fact
that with such a definition of
f(a), the function becomes Fig. 45

continuous at z = a. . ; If
The above argument may be put in geometrical language.

We represent y = %—2 graphically we have the result

shown in Fig. 45, which is a straight line with a gap in it for z = 1.

Since the function "22_'*'_"”_;_2 is not defined for z = 1 we are at

Giving this value to the fraction makes =z 4 2 true

3_}-.“
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liberty to choose any one of the dots in the vertical line through
2 —

H—flg forz = 1. It is most convenient to

chgésé’the point which fills up the gap and makes the graph con-

z=11%e répresent

. tintious. This is a geometrical version of the statement that it is
{_“tonvenient to define f(a) as the lim S(z) when f(x) takes on the

T—a

form g when z = a.

We wish sometimes to find the limit of the value of a function

as the variable increases without limit. The following example
illustrates the method.

2
Find the limit of z+2 i for z — o0,

32 + 22 —
By the theorems on limits this will take the meaningless form %r

but dividing numerator and denominator by z2, we can write the
fraction as

. 2 ca e .
and since = 9_20’ % are Infinitesimals by Theorem I, Art. 185, we

have % for the limit of the fraction.

The symbols g; % are called indeterminate forms. Among other

such forms which may arise are 0 - © and 0 — oo , but the expres-
sions which give rise to these forms may be reduced to the form

0 .
o 28 shown in the following examples.
1

r—1
any other value of z we may write

Ezample 1. (22 4z — 2) - takes the form 0 - oo when ¢ = 1. For

2 _ _*l_z2+x—2_
@F4+z—2 r -1~ -1 =z 4 2.

]j .
Hence, Sy @te—2). 2= lm g as,
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z—1 224+2-6
;2_—9—-?(:;_‘% takes the form o0 — 0 when z = 3.

Ezample 2.
For any other value of z, we may write

z—1

lim (2—~-1 #42—-6\ lim -2 _ 1
Hee, (s ) T e A m T

EXERCISES

What values should be given to the following expressions in order to make
them continuous for the values of indicated?
22 —9 222 — bz — 12
.x_3whena:—3. G.W
322 ~ 4z + 1
: 1

e —

when z = 4.

22—8 —9 when zv_éwg:/.dbrag}i: rary

when z = 1. .—\/—;;—_—3 Q

N

@ —27 - 222 + 132 — 7 "
p— when z = 3. N YN when:cN—.. 7.

3 — ‘.,’
-2 when z = 3. . (222 — 3z) - (%when z =10

T2 —9
23 + a3 -5 —2z 3\ -
e when 2z = — a. 10. T :v(‘l'\- &) when z = 1.
As n increases without limit find the limits pf‘;ﬂh“following fractions.
3+ 4n Sui
S 8. o P
3n G 3 =T
032 —z 1 9

11,

12, ———.

" 2n2 — 1 ¢

3
b



CHAPTER XXII

INFINITE SERIES

188. Definition. Let uy, us, - - -, %, -+ be any unending se-
quence of real numbers positive or negative. The expression
wmtut o+ U U e,

‘when the terms are formed according to some law of succession, is
called an infinite series.

In the discussion of geometric progressions (Art. 86) we have
met such series, for example,
l+s+it+s+ -
189. Convergence and divergence. In the series
mtut o Uty
let S, represent the sum of the first » terms; that is, let
S = uy,
8= ur + u,
Sz = ur + us + us,
Se = + Uy + --- + Un.

Example 1. In the series 1 + % + i + é + .. given in Art. 188, we have -
S =1,

- 1_3
S=1+5=5
Se=1+4+141_
i=l+5+;3

7
4’

Sn=1+%+i+...+ 1 =9 1

1= 2 g

Ezample 2. In the series, 1 + 2 4 3 + 4 4 .-+, we have
Sl = 1,

Sz=1+2=3,

S;=1+2+3=0¢,

S,=1+2+3+...+n=g(1+n)_
254




CONVERGENCE AND DIVERGENCE

Ezample 8. In the series, 1 —14+1—141— ..., we have
S, =1,
S =0,
Sy =1,

S, = 1 or 0, according as » is odd or even.

These three examples illustrate three cases which may occur.

Case I. 8, approaches a limit, say S, as n increases without limit.
In the first example above, S, is never greater than 2, no matter
how large a number n represents and approaches 2 as a limit, when
n increases without limit.

Cask II. 8, is numerically larger than any assigned number for, ¥ |
a sufficiently large value of n. www.dbraubirary &

2

This case is illustrated in example 2. N\

Case IT1. S, remains finite but does not approach a W a5 7 in-
creases without limit. &)

This case is illustrated in example 3, where S, gn\a? have either
of the values 0 or 1, according as n is even or f)d(i-'

Series which come under Case I are called .c:o?lvergent sep’es and
are by far the most important. Series Whi;ch\are included in Cases
IT and TII are called divergent series..&Ve have then the

Derintmion. When in an inﬁnfigé series the sum of the ﬁ?'st n
terms approaches a limit as p‘i@c?eases without limit, the series 18
said to be convergent; otherwisegt is divergent.

The Limit, S, of the sum of n terms of a convergent series, written

nlil,noo S,, is often called the sum * of the series. In connection

with convergent series we shall also use the expression ‘limiting
value of the series” to mean lm S,.

From the definition of convergence and certain theorems on
limits (Art. 183), the following theorems may be stated.

TaEOREM I. A necessary condition for the convergence of_ an
infinite series s that its nih term shall approach zero as a limit

when n— 0.
—_——
* The word “sum” is here used in a purely conventional sense. IT’ 8 fn;)}f t:;::
understood as the sum of an infinite number of terms, but as the limit of the
of » terms as n increases without limit.
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=8, = S,
= nli")nw S, — nli_’f‘w 8Sa-1, (Cor. II, Theo. I, Art. 183
=S-8=0.
lim

_ That the necessary condition .~ u, = 0 is not a sufficient

. ¢ondition for convergence is well illustrated by the series

Wat

1 1 1
1+§+§+" +ﬁ+ .

In this case, nri’,nw% = 0, but the series is divergent as will be

shown in example 6, Art. 192.

CoroLLARY. If nlféo U, is not zero, the series is divergent.

1 2 n -
jes = + 2 4 ... divergent,
For example, the series 3 + 5 + + o 1 + 1is divergent,

for the nth term has the limit tasn— .

TuroreM II.  The comvergence of a series s not changed by the
omission of a finite number of terms.

For the sum of the terms omitted is a definite number which

added to the sum of the new series gives a definite number for the
sum of the entire series.

For an illustration, see examples 2 and 3, Art. 192.

EXERCISES

In exercises 1-3, the nth term of & series is given. Write the first three terms
and the (n + 1)st term.

1 n (= L)ma,
L L arT 8.

Write the nth term of each of the following series:

1,1 1 1 1 1 ..
4-1+§+§+2‘7+'-'. 6'1+_2—!+§+E+. .

TS 2
GBIyt te-S+ri-F+

27

5.1+\/L§+

Show that each of the following series is divergent:

1,2 n 1 2,3 4
8. s+ g =242z ...,
3+5+ +2n+1+ . 9.3 5+7 9+

10.a+ar+ar*+ar3+--~wherer>1.
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SERIES OF POSITIVE TERMS

190. Fundamental assumption. An infinite series of positive
terms s convergent if S, is always less than some definite number,
however great n may be.*

Let K be a number such that S, < K for all values of n. Since
the series contains positive terms only, S, is a variable which in-
creases as n increases. Since.it can never attain so great a value
as K, we assume that there is some number less than K which S,
approaches as a limit.

To illustrate this assumption, consider the series

1 1,1
1+§2+3—3+Z“+'“’

I LT I "N X

S 8 S, 2
Fia. 46 o)

N
and take points on the line OX (Fig. 46), to represent Sy, Sz, S, - - -
so that the measure of 08, is Sy, of 08y, is, Sy ete.

NS
\

Sl=1, )
1 \

S =1+ %*31— = 1.2870,

3

1 1 1
S4—1+§—2+§+4—4=1.2909,

We can show that the sum of n terms of this series is less than 2.
(See Art. 192, example 2.) Hence, according to the a.sspmption of
this section, there is some point not farther to the right than 2
which S, approaches as a limit when n — .

An analogous assumption exists for a series all of' whose terms
are negative. An infinite series of negative terms 1s.convergent
if S, is always algebraically greater than some definite number,

however great n may be.

* For proof see Pierpont’s Theory of Functions of a Real Variable, Art. 109.

www.dbragh:b,i'éry .0
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~ EXERCISES

1. It camibe shown that the sum of the series,
LT S T PPN S ST
\ 1+1—!+2—!+§+4—!+ +(n—1)!+ ’

s &

. {i8%always less than 3. Illustrate the assumption of this section graphically
+*¢{ > by means of this series.

2. Tlustrate graphically the assumption for a series of negative terms
by means of the series,

191. Comparison tests for convergence and divergence.
TaEOREM I. Given a series of positive terms
Ut Ut o Ut

to be tested for convergence. Suppose we find a series of positive
terms
L e R R

known to be convergent, and such that each term of the v-series s
equal o or greater than the corresponding term of the u-series, then
the u-series is convergent.

Let Se=m+ut - +u, )
and S =v1+ v+ - + v, @)
By hypothesis, '

UM S0, Upg S0y *°, Uy £ V. 3)

Adding members of (3), and using (1) and (2), we have

S = 8.

n—oo n—> o0

Theﬂ lim S, < lim S,

Since by hypothesis lim S,/ exists, it follows that S, is always
Ies§ than a definite number, and by the assumption of Art. 190 the
Beries uy + up + - 4y, + ... ig convergent.

Trrorenm I Given a series of positive terms

Wt ut o U,
to be tested for divergence. Suppose we find a series of positive term

tvt 4o, 4 -
* For meaning of 11, 21, 31, ete. see Art. 92.




EXAMPLES OF SERIES 259

known to be divergent, and such that each term of the v-series is equal
to or less than the corresponding term of the u-series, then the u-series
1s divergent.

Since v < Uy, v2 < Ug, -, Un S Un, if the u-series were con-
vergent, the »-series would be convergent by Theorem I, but this
is contrary to the hypothesis. Hence, the u-series is divergent.

192. Some examples of series useful in making comparison
tests.
Ezxample 1. The infinite geometric progression
atart+att - Fartt -

is one of the most useful comparison series for testing convergence and diver-
gence. This series converges if |7 | <1 and diverges if |[r] = L That‘itf'.
converges if | 7| < 1 was proved in Arts. 86 and 185. B&IW.‘&HS@&%{H}&EI'YO
Theorem 1, Art. 189, the series diverges if | 7]z 1, since in this caselar™!

does not approach zero as a limit as n — . N

Example 2. Prove the series \
3

1 1 1 1 A
2+1+§+§E+E+.“+(T—_l_)7:{*\\“

to be convergent. 29
Solution: For purposes of comparison take as/the”v-series the geometric

progression L1 R%s)

1+5 + 2 + - '. 3

Write the series to be tested under 'ﬂ{e é;‘)mparison series, and we have
PR
1, 11" 1
1+§+§+—2—3‘+"'+§7_—1+ ’

1 1 1
2+1+?+§g+"'+—(n—_—‘1)—;:1+

each term in the second series is less than the corre-
his is true for every term after the third

If n > 3, then

After the third term,
sponding term just above it. That t
is shown by examining the two nth terms.
1 1
< —_—
m— 1 2
Beginning with the fourth term, the sum of n terms of the first series is

always less than 1 Hence, the sum of the second series can never exceed
4

24+1+4+ % + i =3% In comparing two series it is not sufficient to compare

a fow terms at the beginning of the series. The nth terms should be com-

pared.
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Ezxample 3. Test for convergence the series

-3 2.3 3 1 1 1
'\¥+T3+I+1+§+2_-§2+§-—33+
Ify}e,drop out the first three terms of this series and prove the remainder to
besconvérgent, the given series must converge by Theorem II, Art. 189. Thus,
\if\the series beginning with the fourth term has a sum, the sum of the entire
““series will be the sum of terms after the third plus3 -3 +2.324+3 =102
Beginning then with the fourth term and comparing with the series,

11
1+ 3 + 95 + .-
which is known to converge to g (Art. 86), we have

1 1
It gtgtagt o fpgt

1 1 1 1
md o lgtrgtrmt ot aTyat o

Each term in the second row is equal to or less than the corresponding term
in the first. Hence, the second series converges to some number not greater

than g and the sum of the entire series in question is not greater than 103.5.
. . 1 1 1 1
E. le 4. Find th —Stssto—+—5+ "
zample in tesumofthesenesl.2+2.3+3‘4+4_5+
Solution: Write 8, in the form

1 1 1 1 1 1 1 1
S, =(1—-3 2 -3 I T i =1—--—
(1-2)+( 3+ (5 1)+ = ar) = - aE
Hence, lim o

n—op On =1,

and thus the series is convergent.

1 1 .
Ezample 5. Show that 1 + o + 3 + -+, where p > 1, is convergent.

Solution: Write down the inequalities,

1 1 2 1
>t <p v

1 1 1 4 1
5r 6? el < 4p = 41’
1,1 1 _8 1
9p...15p<=_1.

Add the members of the inequalities, thus

1,11 1,11
21’+3F+4_P+.“ <2T_1+F+8"p?1+‘ .
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The right-hand side of this inequality is a geometric progression whose
ratio is —2;1_-—1, which is <1 when p > 1. Hence, the series is convergent.

Ezample 6. Show that the harmonic series

T gtg+at o

is divergent.

Solution: Consider the inequalities:

Adding members of the inequalities, we have

1.1, ™

{2\
But the right-hand member of this inequality“egr’ be made as large as we
please. 'The series in question is therefore (}.1 gent.

193. Summary of standard comparison series. When any new
series has been shown to be donyérgent or divergent, we evidently
increase our supply of series for comparison purposes, but the
standard series given in examples 1-6, Art. 192 are so useful as to
deserve special mention and are sometimes called comparison
series.

Convergent series for comparison.
lLatar+a?+ -« +arm+ - (r<1). (exercise 1, Art. 192)

SRS SR S _——1——-'—}— .-+, (exercise 4, Art. 192)
2istestyat  TamsD
1 1 1 1). (exercise 5, Art. 192)
Sltgtgt o+t > ). (

1 i .192
4.1+%+?%+...+_+..., (exercise 2, Art. 192)

nr
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Divergent series for comparison.
Lataerrar+ - +armt+ --- (rz1). (exercisel,Art. 192)

Ny 11 1 .
9. 1\ . 3 + 3 +3 + + ~+ . (exercise 6, Art. 192)
EXERCISES
Show that each of the following series is convergent:

1 1

R s R xr R ar"
1 1

m+1+$+1

+ + ...

24”

B s + o

3+1
SR e

1 1 1
T 2T5 2756
1 1 1

"3t mrst s

RN N
9% 32

+ PN

L e e s L

1 1
ettt

Show that each of the following series is d1vergent:
13.

14. =t 0<pp<l).

15.
V3

3 —
1 1 1
16. 19, — + —
VE+ 3+V4
2
17. - 4+ = + = 20. 1 3 3 R

+

1“_—%_'1'—'*"22_;

Test each series by companson or by Theorem I, Art. 189 to determine
whether it converges or diverges.

21, §+§+1+...

+
1 1 1

rriteEyitEgio %o . 7+
2 4 4

3—'-‘|--i i_’_....

V2 V3 Vi
24.——- —3?-{-42.1,....

22




RATIO TEST
194. Ratio test. Given an infinite series of positive terms
Ut Ut e Ut Ung e ®

Consider the ratio, u"+1, of the (n 4 1)th to the nth term. Sup-

pose that this ratio approaches a limit as n — o0. Call this limit
Lim un+l

E. In other words, suppose n—% o

= R. Then we may state
the ratio test as follows:

() If R < 1, series (1) is convergent;
(d) if R > 1, series (1) is divergent;
(¢) if R = 1, the test fails.

n+l

. im ¥
(@) R <1. Since nl_‘ilz‘n 12“ = R, we can make —t
n

R by as small a number as we please. Hence, if we plot valuqs of
o R r 1 ¢ & ‘..’\
Fre. 47 b\

N\

Lntt on the line OX, Fig. 47, as n increases the\p01nts representmg

\
1?Z+ will concentrate about the point R\If’n is taken large enough,

they will lie to the left of the pom‘t #, where R < r <1. For
these values of n, we have NS

7N

\™
U 3
it <7, Untr < Tln,y
Un

U
Juiax B9 7y, Unpe < Tlnpr < U,
Unt1

Unts o 7, Unyz < TSUn,
un+2
Since r < 1, the series
Pun + 12Uy 4 Uy F oo = U E T
is convergent. But each term of the series
Un+t1 + Uni2 + Unyts + A

is less than the correspondmg term of the ru series. Hence, by
Theorem I, Art. 191, the series w1 + vz + - Un -+ - - - is convergent.
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o Untl ey 1
(®) B > 1. In this case the points representing u+1 will ulti-

matelyeoncentrate about the point R on the line OX in Fig, 48

1
Fic. 48

and if n is large enough, they will lie to the right of the point 7,

where 1 < r < R. Then
'L—%:—l >,
Unil > TUg;
Unt2 > T2,

un+3 > Tsun;

Therefore, since the series
TUn + 1%Un + TPu, + - -
is divergent for r > 1,
the series U+ U+ us+ oo Fu, + -
is divergent (Theorem II, Art. 191).

© R=1. 1t Im ZxH 1, this test fails. This is illustrated

n—w
in the two series,

and

The first has been shown to be convergent (exercise 4, Art. 192), the

. . i Ungl
second divergent (exercise 6, Art. 192), but for each nh_r,nw —,EJL =1
Ezample 1. Consider the series

1,2 3 4
§+§+§+§;+'--.

n+1 n
Here, Uny = W) Up = 2—"y
u‘n+1 -
u"

m Ynp
0 T




RATIO TEST
Ezample 2. Consider the series

2 2 » 0n
ztetats

Qnti 9n
a2 " mrr

2nt (n4 1) 2(n+l)’
nt2)°

Uppr =

Un
lim Yn41 __ 2
n0 o, T 4
n

Hence, the series is divergent.

WWW. dbrauhbrary o"v

EXERCISES N

Apply the ratio test to each series to determine its convergence or dwergence
In case the ratio test fails, apply other tests, or use previous anwledge to
answer the question of convergence.

Sttt
.§+§+§+~u
e L
1+%+%+$+~u
1+ 2+ 3 8.
%+
-1+% bt

1 21 3!
SRR T

31 32 33
2 T!+§I+ﬂ+

+ e,

1 2 3
+—~+€:I

O sritiT +o

+ + + , where p may have any real value,
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SERIE% WITH BOTH POSITIVE AND NEGATIVE TERMS

195, The following theorem will throw light on the convergence
of series, whose terms are not all of the same sign.

; ThEorEM. An infinite series of real terms which are not all of

_{the same sign is convergent if the series formed by making all the
+“{> terms positive is convergent.

After all the minus signs have been changed to plus signs, let
the series be Ui+ up Uz + -

By hypothesis, this series is convergent and therefore has a limit-
ing value S. The sum of the first n terms of this series is then less
than S. Hence, the sum, S,, of the first n terms of the original
series is numerically less than S. Let these n terms consist of p
positive and ¢ negative terms. If P, be the sum of the positive
terms and N, the sum of the negative terms, then
S.= P, — N,
But P, and N, are always less than S. Hence, by Art. 190,
P, and N, approach fixed numbers P and N respectively as n
increases without limit. Then
nlf)nw S. = P — N, a definite number,

and the series is convergent.

196. Generalized ratio test. The ratio test can readily be ex-
tended to series whose terms are not all of the same sign. Since
a series of positive terms is convergent if

lim YUns1
oo o < 1,
Un

it follows, from the theorem just proved in Art. 195, that any

series is convergent if the numerical value of nli‘f;o uu,,+1 is less
than 1. That is, if

Hm | Un1

noseo | | < 1.

If 1240 S 1) the nth J
n—w [Ty , the nth term cannot approach zero a8

lifnit, hence, by the corollary of Theorem I, Art. 189, the series is
divergent. We may then write the ratio test for any infinite senes

‘ U +
as follows: L
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lim |Un1 )
5, -?’L‘—n < 1, the series converges.

i Un. , .
If nlinoo ﬁ > 1, the series diverges.

If nlfcl,o uuL:l = 1, the test fails.

Ezample: Test for convergence and divergence the series
1 — 2543822 — 4234 ...,

NI

Here, - prp -

o |,
and nh_',nw f =]zl
www.dbraulibrary.o
Hence, if 2 lies between + 1 and — 1, the series is convergent, { For
|z | > 1, the series is divergent. The interval between 4 1 and — 1 isiealled

DIVERGENT CONVERGENT DIVERGENT
-1 Ps) 1 s J

O
Frc. 49 \

N

the interval of convergence of the series, and is repx‘eéeﬁted graphically by
the heavy part of the line in Fig. 49. For the poixktﬁ 1 and — 1 the test tells
us nothing, PN

197. Alternating series. A seriqs'%hose terms are alternately
positive and negative s converggn(fzf"each term is numerically 'les‘s
than the preceding term, and if thenth term approaches zero as a limat
when n increases without limitv’

Let the series be .
w—wt U —ut o+ (- D U
where U3, Ug, Us, * * - are positive,
and U < U, U < Ugy t 0y

and where nli,n;, Un = 0.

Let n be an even number. We may then write S, in the form
Su = (g — ) + = ) + <+ s — ).

Since each parenthesis contains a positive number, S’f is positive
and increases as n increases. We may also write S, in the form

Sp=u = (ug — ) =+ = (Ung = Un-1) = Un.
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Since the number within each parenthesis is positive,
Q) S < s

By the, assumption of Art. 190, as n increases beyond bound,

S{appfoaches a limit S. But

Sn+1 = Sn + Un1y

" hence, lim 8,41 = lim S, 4+ lm %4

By hypothesis, Lm #%,41 = 0.
Hence, Iim 8ppy = lim S, = 8,

and the series is convergent.

198. Approximate sum of a series. In the case of some series,
for example, a geometric progression, we are able to find exactly
the limiting value of the sum of n terms as n increases without
limit, but with many series we must be content to find an approxi-
mation to the limit, say correct to a certain number of decimal
places.

Ezample: Calculate
1 1 1

1
_§+3_!___+m+...

1 71!

correct to four decimal places.
1 = 1.00000

L 0.00833 — 0.16667

51
1
91

= 0.00000 — 0.00020

1.00833
— 0.16687

0.84146 " 0.16687

To four decimal places then the sum is 0.8415. But the ques-
tion arises as to just where we must stop adding terms. Even if

— 0.00000

1 .. .
1 has no significant figure in the fifth place, we are droppi§

an infinite number of terms, a number of which when added to-
gether may affect the result materially. In the case of an alter”
nating series, this question is easily answered by the




POWER SERIES

THEOREM. The sum of the first n terms of a convergent, alternat-
ing decreasing series differs Jrom the sum of the series by less than
the (n + 1)th term. 7

Let S represent the limit of S,, the sum of the first n terms as
n becomes infinite, and R,, the remainder. For n, even or odd,

have
we |Rnl = Untr — Ung2 + Upgs — -+ - -,

From Art. 197, the sum of this alternating series, whose first
term is 4,41, is less than the first term. Hence,

|8 = 8] = | Ba| < o,

EXERCISES R\

Test the following series for convergence and divergence:WWW~dbra}J}'ijt"réI'Y~°
1,1 1 1,1 1 D
1.1—§+§—z+"'. 5.1—§+3"7+"". a
_1_ ,\L + ..
3 23\‘"..4 28 -
7 V6
K7 S S

LY 1 1
Satewtsatoat

+ £%a > 0).

IRETE L S

i

= N

Compute the value of each series, correct to four decimal places:
1,1 1.1 _2,4_6_ .
Wl-gitg—gqitgi— - Bl-og+g—qmt -
1

1 1 1 1 1 1,1 1
e wmtip gt Yo mtamoamt o

199. Power series. The series
@ + ar + a2® + o0 et - (1)

in which q,, @, as, --- are constants, is called a power series.
Such a series clearly converges for ¢ = 0. It may converge for a.ll
values of z, may diverge for all values of x except for z = 0, or it
may converge for some values of z and diverge for others.

The generalized ratio test (Art. 196) is used to find the range of
values of z for which such a power series as (1) converges.

4
§

1%



INFINITE SERIES

When the values & for which a power series in z converges are
represent@d graphically, they form an interval called the interval of
convergence. The end points of the interval require special study
to ,(\i'é‘be\fmine whether they are to be included in the interval of
convergence.

_WTf the series converges for all values of z, the interval is often

said to extend from — o to + o0.

EXERCISES

Find the interval of convergence of the following series. Exhibit the re-
sults graphically.
x|, 222 | 3ad

Lot T

2,m 2pn+1
Solution: Up = n; v gl = %
lim nyt _ lLim (04 1)%2 _ lim <712 2n 1 >

now w, e g n—w \Ze T 2w T g

z
i)t T2

2

DIVERGENT CONVERGENT DIVERGENT
F1e. 50
The series is therefore convergent for | z | < 2 (Fig. 50).

x| ozl
2. x+§+§+
Solutzon il e
: Un = —» Upy = .
P |
lim My _ lim _mz
now0 y,  nown 41
Hence, the series converges if | #] < 1, that isif — 1 < z < 1. With respect
to the end points, 1 and — 1, the series diverges if + = 1 (exercise 6, Art. 192).

If z = — 1, the series is an alternating decreasing series and thus converges.
Hence, the interval of convergence is expressed by — 1 £ z < 1.

z z\2 3 3
3.1+(§)+<§>+(§>+---. 6.1+-2£!+%—$;+%+---~

" 1+2§+% L 7. 14212+31 22441254 - - - (870

5
1, 8z, 32 | 3% .
I N Bttt
PR R R
By division expand the following fractions into series, and test for co%
vergence.

1 2 1 — — -
9. . 2 z (1 —2)(1 — 22)
1+z 101—2:(: 11'1+:v' 12. 142z )




BINOMIAL SERIES

The expansions of four functions of z are given below. Find the interval
of convergence of each of the series.

13. sin x it — 0+ e -, if  is measured in radians.
14. «++, if # is measured in radians.
1
15. 5
1 3
16. Arcsinx=:c+§-——+

17. From trigonometry we know that arc sin » - Calculate the value

of 7 to four decimal places from the series in exercise 16.

www.dbraulibrary.o

“

200. Binomial series. The power series

mim —1) ,  mlm— D(m — 2) “
1+7nx+2! x +3! x":l-\

28 3 .
is called the binomial series. If m isa positive integer, the series
ends with the (m + 1)th term and has been shown ‘to be the ex-
pansion of (1 + z)™ If m is not a positiy€integer, the series
Is an infinite series, but it can be shown thaf it converges towards
(1 + z)™ when z has any value which makés'the series convergent.
In other words, it can be shown thaNOr these values of z, the
binomial expansion holds for any ex’ponent integral or fractional,
positive or negative.* O

The binomial series is convergent for} z | < 1, and divergent for
[z > 1. For, we have, beginning with the term mz,
_mm = D=2 =)
B () —
v = Mm =D =2 - m—nt+1
m=n_
un  n4+17

Hm %ny1 _ Lim M — N _ LA \ ‘ /
n——moun _n—>oon_|_1 i .

Hence, from Art. 199, the series converges for — 1 <z <1.
-\_

* For a proof of the binomial expansion for any exponent, see Fine's College
Algebra, p. 553. R
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INFINITE SERIES
In expanding (b + z)™ for fractional or negative values of m,

\ m
we may\write it in the form bm<1 + —i) - The expansion will

£ X
2\

then‘\proceed in powers of %, thus:

k3 x " — m E m(m — 1) E 2 e . .
b<1+5> ‘b<1+mb+ 21 <b>+ )

This series converges when %‘ < 1, that is, the interval of con-

DIVERGENT CONVERGENT DIVERGENT
-b 0
Fia. 51

vergence for the expansion of (b + )™ is the interval between — b
and + b (Fig. 51).

EXERCISES

Expand the following binomials to five terms and indicate the interval
for which the expansion holds.

Q42 8 1
. (1 4 22)5. T V2o Ty

. (1 — 2y)3. o 1
. (1 — 3y)3. VT2

. (2~ 3z)3. 10. (3 — 4%
. V1t g 1

1 L.
. V1 ¥ 3. V14

Extract the following roots to four places of decimals by the binomial
expansion.

12. V5.
. 1
Solution.: CVEs = (43 4+ 1)} = 4(1 + %)3

4(”3 £33 3t )
= 4(1 + 0.00521 — 0.00003 + - - -)
= 4.0207+,
16. V9. 19. V/26.
17. V1.05. 20. v/0.99

18. V63. 21. Vv0.341.




LOGARITHMIC SERIES

201. Logarithmic series. The power series
—_ ... — n—1 fj e
H= Dt

is called the logarithmic series.

. 1 1
Since Uppy = =+ g, = | 2 g
N+ n + 1 n n y

lm Unp1 _

we have n—w e =~
n

and the series is convergent for | z | < 1.

It will be shown in the caleulus * that this series converges ’tg:‘. i
log. (1 + z) for any value of « for which the seriesmwodbeagglfihl,‘ér}ﬂoﬁ
where ¢ is the base of natural logarithms discussed in Artoi44, ‘
The series can then be used to find logarithms of numbers to the
base e. Thus, AN

#\J

log,(3) = log.(1 + 3) L™

1@, @300
2”2 Ty T g

o\ L
The logarithmic series can be used #o'ealculate logarithms of
positive numbers less than 2. Howeyer, it converges so slowly

that it is not well adapted to numei*jcal computation.
4 o\’ ¢
DIVERGENT " copfVERBENT DIVERGENT

Fi1a. 52

To derive a more convenient series for the calculation of natural
logarithms, we proceed as follows: }

2t 2t at
loge(1+x)=x—§+§——+

Hence, log. 1 —2) = —2

By subtraction,

1+z z8 il
lOge(l—{_l')_loge(]_—x)=logem=2<x+§‘+g+>
\_

* Townsend and Goodenough’s First Course in Calculus, p. 326. ] )
T For a more detailed discussion, see Osgood’s Infroduction to Infinite Series,

PD. 23 and 44
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142 m+1
Let . = ’

l1—-2z
whetiee’) z =
o N
‘Wé have then

m+1 1 1 1 )
log, = "2@m+1+3@m+1ﬁ+5@m+1ﬁ+ ’

1 1 1
log.(m + 1) = log.m+2 <2m+1+3(2m+1)3+5(2m+1)5 + )
If m = 1, we have

1%m=o+2e+§+

3
Letting m = 2,
1 1
lOge3 = 10ge2+2<5+3_—53+ >
= 0.6931 + 0.4055 + --- = 1.0986 + ---.

In this way the logarithm of any number to the base ¢ may be
computed. -
From Art. 144, if o is any positive number, we have

1

5.$+””>=Oﬁ%1+‘m

log.a 1

log, 10 ~ log, 10
Hence, if we have computed the logarithm of a number to the base
e, we can find its logarithm to the base 10 by multiplying by

1 I
fog, 10° To five significant figures = 0.43429.

logwa = - log, a.

1
” log, 10

In computing a table of logarithms we need compute the loga—
rithms of prime numbers only. The logarithms of composite

numbers may then be found by means of the theorems on loga-
rithms.

EXERCISES

1. Using the series for log.(1 + z), compute log. Z to three places of

decimals and then find logio g

2. Calculate log, 5 to four significant figures.
3. Find log. 9 and log, 10 to four significant figures.

4. By computing the logarithms of 2, 3, 5, 7, construet a table of logarithms
to the base 10 for the whole numbers 1 to 10, and verify by reference to 2 table-




ANSWERS TO ODD NUMBERED
EXERCISES AND PROBLEMS

[The answers to even numbered exercises are omitted for reasons stated in
the preface. Those of some odd numbered exercises are also intentionally
omitted. The answers to even numbered exercises are available in a separate

answer book.]
: Art. 8. Page 12

L 4y —z — 5. 6. 17s — 3¢ 13. 5.
3. —2t—1. 7. 6m + 1. 15. 3¢ — 6b + 2.

Art. 10. Written Exercises. Page 16

3y \Iww.albraghhféry.o

R R\
s+2 17, zy(a?F 12).

11

13. 7T—z \21...0(0, + b).

Art. 11. Page 18 £\
9 4b —3a U‘l‘\ 17. 22 — 3y,
" b+a § 4 %y
11 3z? + @ \ 19. 2a2 + 3ab.
AN 21 a— 1.
13, E0ab+ 5 ’ 4
AT g3, 1+ 2

15. ac. 18 + 5a

Miscellaneous Exercises. Page 19
L 17z — 3y, o 1 23. 23.64.
m? -+ 4p? “a-—2> 26. 0.716.
mn 19. Gz +4)-2+y—-8=10z+y. 27. 30.
z(2z + 1)' 21. $975.61. 29. 60.
T 5 -9z

Art. 14. Written Exercises. Pages 23, 24
4 T 5 sz-}—l.
- i_zy 89, 109, ## — 3¢t + 1. b. 51 0,§: gr o T3
- A = a2, L Y241 242
V2 -1 =

ol
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1+z=m+1
Let N\ 1-z m

<A 1
Whe'nce* T = m

Y
'We have then

Pom1 1 1 1 )
log, — — —2<m+m+5(2m+ o)

log.(m + 1) = logem+2<

1 1 1
om+1 3@mT 1 @Emr I T )

If m = 1, we have

1

1og22=0+2(—+3l4+1

5. 38

3 +-~->=O.6931+---.

Letting m = 2,

1 1
log.3 = log, 2 + 2<—5- + 3.5 + >
0.6931 + 0.4055 + --- = 1.0986 + - - -.
In this way the logarithm of any number to the base ¢ may be
computed. -
From Art. 144, if a is any positive number, we have

log.a 1
log, 10 ~ log, 10

Hence, if we have computed the logarithm of a number to the base

¢, we can find its logarithm to the base 10 by multiplying by

1 o pe
fog, 10" Yo five significant figures, Iog 16 = 0:43120.

logwa = - log, a.

In computing a table of logarithms we need compute the loga-
rithms of prime numbers only. The logarithms of composite
numbers may then be found by means of the theorems on loga
rithms.

EXERCISES

1. Using the series for log.(1 + z), compute log. g to three places of

decimals and then find logy, Z

2. Calculate log, 5 to four significant figures.
3. Find log. 9 and log, 10 to four significant figures.

4. By computing the logarithms of 2, 3, 5, 7, construct a table of logarithms
to the base 10 for the whole numbers 1 to 10, and verify by reference to a table-




ANSWERS TO ODD NUMBERED
EXERCISES AND PROBLEMS

[The answers to even numbered exercises are omitted for reasons stated in
the preface. Those of some odd numbered exercises are also intentionally
omitted. The answers to even numbered exercises are available in a separate
answer book. ]

: Art. 8. Page 12

1.4y —2~-5. b. 17s — 3t. 13. 5.
3. —2t—1. 7. 6m + 1. 15, 3a — 6b + 2.

Art. 10. Written Exercises. Page 16
S 9. . SY__.
CEEY @+
s+ 2
3s+3)
_49
7 -z

11,

13

‘a
2,
"5

Art. 11. Page 18

. 2a2 + 3ab.
2 oL

1 \ g 4
T 1 C TN 742
2y — 3z . ac. * 18 + 5a
=

1% g~

Miscellaneous Exercises. Page 19
<17z — 3y,
. ] i L.
m: + 4n? a—b
mn 19, Gz +4)-2+y—-8=1Wz+y.
, 2@z + 1) 21. $975.61.
5 — 2
Art. 14. Written Exercises. Pages 23, 24

19 4,75 #EL
1l - Ey 89, 109, 2 — 3t 4 1. 5. 5! 0,§, gr 252

“ A = ar, V2+1 z+2
13 -L a1 T

275
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Art. 16. Page 26

Art. 18. Page 31
5. 0, 4. 7.4, 1

Art. 20. Page 33

9. —3. 3
13. 2.
15 2

1. - 15. 3.

Page 41

1lL.z=3y=4. T.x=2,y=—3.
. No solution. 9or=-3y=2
. An indefinite number of solutions.

Art. 28. Page 43
6. z = 0.5,y = 1.1
7.2=0,y =0.

Art. 29. Page 45

7.2 = 1Yy = —

Art. 30. Page 46

5. z

7

L =3 y=2
Art. 31. Page 47

. 336. 7. — avx — buy.

49

=a+by=a-b z=2a
=0,y=22=14

Miscellaneous Problems. Pages 60, 51

. 48, 84.
. 60 years, 24 years;

mb(n — 1) + na(m — 1) years, bn — 1) +am —1)

— ears.
m n m-—mn y




ANSWERS: ODD NUMBERS

. 322 — Tr + 2. 7. 30°, 60°, 90°, 9. 50 rods, 30 rods.
. $20,000 at 3% per cent, $15,000 at 4 per cent.
. $60,000.

P 2acn — (a + )P (a + B)P — 2abn

"2 2l =0 T 2ac=p
17. Anal. geom. 83, algebra, 93, trigonometry 88.

. 92, 86, 83; 97, 87, 77.

. 3 0z. 72 per cent silver, 5 oz. 84.8 per cent silver.

p—cn 29. ¢ = 0.036, by = 999.5.

Tt—c 3%. 2 =2
. 5 min. 291 sec., 6 min. 45 sec. 3. 2 =2,y =5
. b = 761.4 — 0.0863A.

Art. 34. Page 55 oD
. 7. 13 3a® 21, qngn2, \évlw%dhr@g%i.b,rary.
. 10, " 2be 93. ahn, ety -};‘yf‘,
15. — 27msne, 925, yntgent, 33. (%_ 1’)}.'
17. %;’%2. 27. at. 35;..?1:; -
3 ~85.402.
19, — 243 29. 2. & _

Art. 39. Page 57 N
5.27. 7.1 9.27. 1L 2//M3. 2z 16 05 1T

Miscellaneous Exercis;es'%'ages 58-60
1 1 NN 3 15. 20.

* Ia0 5. ""§ ,’\ 11. 5

1 7. o,

9. 2.

° O™ 17, 2.
y x
7

10
e 13 5
. xYyTE,
. (1.08)-, .
- Baiyh. 57. 3.
- atbict, . 20 - 59. a*.
006 33. 49, (40)%. 61. 1250
e 35. 51 (351)%. 63. 170.4.
- 14 - 10, 71. 0.000000005305.
3% — 4,0, 83 73. 0.6867, 0.5896, 0.4861, 0.3934 microns.
. 666 - 10~10,

. m? —m 41, 53. (192)%.

y?
8.5 55. 22,

w

(S
DD Rk B

[N

[S10

31.

B P W
OO

Art. 41. Pages 62, 63
7. Vpg. 11, of.

o L v 13. afbder,
2T 16. abic?,
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17. (@ + b)i.
atbic
19. &

s 1 3
T3Y3zZ

21.

‘23; &
25,

217.

2. V/1000.
. V' — 375mena.
. 12v2.

5. 8V3

Y27am
33.J 5

36. V(1 + )%

39. V0.

45. Vi, V.

47. V3125, V343,
49. 2V'm3, Vaup,

b1, Vasysat, 24 3y,
53. 2v2.

5. 2abV/3b.

7. 3V2.

Art. 43. Pages 64, 65
13. 0.

15. <1 -
Yy

59. 5V5.
2302\/6.
9
V2,
* T4
. 2V/3.
. Va — b.
2

-3
. 2a3V'7h,

. Tarbict.

e

i 19. (b + 2ab — 3b9)V2g.
43V6
- 2L (1 4 22 — 3b)V3.
. (3b + 4ac® -+ 2b%)V, 23. 18(V3 — v2).
. (ac + 81 — 5a%b) Vi
Art. 44, Page 66
. 15Vamn. 9, 6V/5. 19. 40a2hc2V a?b,
. 40V'70. 13. . 21, — 3r2spV/rish,
. abVa?. 15. 3V/50. 23. -2
. 10aVatipics, 17, 22228y, 25. 6 + 215 — 24V2.
. 25 — 11V, 33. 2023.
. 59 + 4V6 — 6V10 — 12v15, 35. 113 + 8v30 — 4V15 — 48V2.
. 9a% + 1245b% 4 a3, 37. 0.

Art. 45. Pages 67, 68

. V2, 15. V6 — 4V3. 95, _ 7V10 463
. V7. 17, 349 ) 71
. T 27. 2 + V2.
. Vab. 19, 71) 29, V15.
. 31. 13.89.
Vabo @ o1, Ya+tbd(Va+ vVh) 33 9537
cd

etb 35. 0.2679.
e 23, — ‘/§+42‘/5. 37. 1.260.




ANSWERS: ODD NUMBERS

Art. 46. Pages 69, 70
. 1. 11. 6. .
. No solution. 13. 0. 17. ¢ = P L.
. — 2. A 19. 1336.
. — land?. 16. s = = %\/3 21. 5.9 sec.
21
‘4
Art. 47. Page 71
. 8i. 5. 6bz. 11. z* + a%. 16. 3. 19. — 1054.

3. — 2aV5. 9. 1. 13. 7. 17. 14. a1. 0.

Miscellaneous Exercises and Problems. Pages 71-73
10. V12, 8Boa+1+2 SN
z . www.dbraulibrary.org
2L = 37. 11.8.
23. . 39. 249. - Y

25 41. 0.039, £

L . 53, N\

. 2(6% + 3). 97, 1. 43. 9.}7;;. -

. 5426k 45, 0.0059.
, , 29 5VE+1L 47302,

. 5+ 3(12)5 + 3(18)s. <t

. 0. 31 .9 { \&J. .14,

. e \
. (a + b)7=, " ‘)
33, 0 -7:3 2; EAY

N

Za
S
Nl

V243,

: s 3
Lol i~ bl

Art. 49.(Bage 75
7. n, ) m. 9. nif we consider the equation
as a quadratic in s; s, if a
quadratic in n.

Art. 50. Page 77
1 2
9- g! b g'
11. 25, — 7.
13. 4 + V6, 4 — V6.
4
15. 2, — 3

-3+ 4V72, 3 — 472, 19. 1.

m . -—m
Orm; m=(1+8)x0r(1—e)x; € =

31,19, — 3.7

26. 2a, — b. O
2. 33. 3.7, 5.3.

27. a, b+ 2.
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Art. 61. Pages 78, 79

11
15. TE

17. 2, — -

19. 2 4+ 2i, 2 + V3,
.f
21. 1, — 2, —li?”-

1V —144v3 1, 143Vl
. T M

23. 5,2, —= Vil
5 —5 2 10
25. — 9.

Art. 62. Page 80
22—~ 22— 3 =0. 9. 22 ~424+1=0.
2?44+ 3 =0, 11, 22—~ 22 4+ 5 = 0.

. 622 + 62 —1=0. 13.x2—<a2;;b2>x+1=0.

Art. 54. Page 81
. k=3, 0or —1. 8.k=1m=0.

Art. 56. Pages 82, 83
. Real and unequal. 18. k =
. Real and equal. 16. &
. Imaginary.
. k=43,
1

k=g

Art. 57. Page 84

. The graph is concave downwards. The graph is symmetrical with respect
to the y-axis. The graph passes through the origin.

Problems. Pages 84-87
. 21, 22, 13. 45 miles per hour.
. 3.73 sec. ) 15. 1.303" inches.

. 55.9 feet. 17, 9+b— V@ —ab 1 B a
. 4.23%+ sec. : 6 ’

. 1449 feet. 19. 0.56.




ANSWERS: ODD NUMBERS

. The graph; a parabola convex downwards, widens out, one root approach-
ing 3, the other increasing without limit.

. 16 inches. 33. 1 part corn to 4 parts rye.
. 8 feet per second. 1+ V17

. 27.1 square feet. 86. o 2.56%, — 1.56~.

) n_n,=aia2—4T2b-
2Tb
Art. 60. Pages 92, 93
. (3, 2), (2, 3). 13. (4, 0), (0, 3).
. (7, D), (-7, —1). 16. (1.4, — 0.17), (0.036, — 6.7).
., 1), (_ 19, _ 3_5) 17. 640 yards, 484 yards.
13 13 19. 15, 16; — 16, — 15.
. (3, 2), (g, - %‘1) :; f2>73()2 . \/Vﬁm;-w d\/xzauh.brary .org| %

. (2,0), (— 4, —3). 26. Two points for any real value of a.
b=xrvV1i+m

3 3/ /11 27. e
' <15’ 5)’ (5’ 5>' 29. (3, 4). ,\{:,\
Art. 62. Page 96
. (3) 2)7 ('— 31 2)1 (— 3! - 2); (3 - 2)
- (47 3)7 (4, - 3)! (— 4, 3)’ (— 4 - 3).

: (9\f 2r) (Qf_2¢5—5) <_9< 2\/’) (_gf,_gvgs).
. (1.1, 2.3), (1.1, —2.3), (— 11, 23)‘,.(’— .1, - 2.3).
Art, .63- \Page 97

C\'

. (5,3), (=5, —3).

@ -3, (-2 3),(29W,5lx/’> (—3§x/ﬁ—-52T
. (6, 2), (— 6, — 2), (83, 61), (— 8, — 617).

. <6f6f> (_ﬁf _§\f> (%ﬁ ~Bivg),

. 4,2), (-1, -2, <7\/_, ;ﬁ) (—7\/?, \/7)

d 12.
3 an Art. 64. Page 98

. (3,2), 23, (=3 —2> (=2 — 3. 1
. 2,-1), (—1,2>,( —14 28, -1-5@) (-1—§f 145 v6):
0; s—2158t=—1158 s = — 1.258.

.S=0,t=—4;s=—41t
¢ = 2.158,

g ¢



282 COLLEGE ALGEBRA

1
6.
T8
R
11.

1 1) /1 1) _1 _1> <_1 _1>.
'<5’§’(§’5 5 73/°\738 75

15.

1

17.
19.

21,

23.
25.
31,
33.

36.

37.
39.
41.
43.
47.
49,
bl.

. x> 6. 1
L < — 1 1. 0<z<;; 2< — 1L

T2 3

Art. 66. Miscellaneous Exercises and Problems. Pages 99-102
5, BN~ 2, 5). 3. (4,9

0575 (5 -3 (-5 - 9)
(3, 6), (— 3, — 6), 6,3), (— 6, — 3).
(w8 (-9 )

(V2, V2), (- V2, — V2).

3 1 5 1 5 1
(—;y —§>) (g:-g)x (6, 4), (—1_1) ﬁ)‘
(2V3, v3), (—2V3, — V3). B B
(2,8), 3,2), (— 4+ V10, — 4 — V10), (- 4 — V10, — 4 + VIO

<;1, i) 27. (g 2)-

o, om(zg) (e () (
(2,9, 4,2), 3+ V21,3 — V21), 3 — V21,3 + v21).
9, 4).

(b 39) (-1 (- L e

Y 4
@,3,5),(—1,—3, —5).
70 and 130. 83. 7 feet and 24 feet.
85. 66. 7 and 9.

120 rods and 160 rods. 7. 22 — 102 +9 = 0.
280 rods. 69. 40 rods, 40 rods.
25, 26. 61. %1100, $900; 79.
7, 9. 63. 12, 6, and 4.

Art. 69. Page 107

6

2’

.z > — 1. 13. All real values of z.
<=1,z >2 6. k< —40r>4; —4<k<4

1<x<§- 17. z > 3.
19. 8 - V2< 3 <3+ V2

Art. 72. Pages 108, 109
9.

19. 153 feet.




ANSWERS: ODD NUMBERS

Art. 77, Pages 112-114

1V = ke, 5 4 k 7. 37.5 pounds.
3.V = ke T @ 9. k=12=%.

w
11. $6666.67, $13,333.33, $26,666.67, $53,333.33.

13. 800 Ibs. 17. 400 tons.

1. =M

19. The strength of a rectangular beam varies directly, as the product of the
breadth, b, and the depth, d, and inversely as the length, 1.

21. 177.1 ft. 27. 5.33% sec.

23. 225.4 ft. per sec., 788.9 ft. 29. 48 cu. in.

25. 0.55 sec. 31, 47.43 miles per hour.

Art. 81. Pages 116, 117 www dbraulibrary org;
Q ,.

. 26, 33, 40, 18.a = —20,d = 4. \
. 1= 46, s = 288, 15. 2500,

15 19. 63, 82, 11, 133, 152
.l=~———y8=—18. £ N\

2 22 +y =+ 2N

a1 22, 2 L2,

78 )
.d—i—lys—396. Vo

A\ X
Art. 85. Pages 118, 11{;

L2 8927 13. 33416,
3213
. I = — 39,366, s = — 29,524.
. 381. L (NI 125,
ca=_ L 187,257 K 3719 121
16,807 16,307
Art. 88, Page 121

3. 18. 7. 10
b. 34.3. 11

e D _ 547y,
}?.3’22;—§:119x =

Art. 90. Page 122

s i

Problems. Pages 122-124
6. Between 185 and 190 feet per second.

. 84 feet. 7. 122.853.
- 2900 feet. 11, $852. 15 L 1L a1 1707‘._9. 23. 1.38 qt.
13. n(n + 1). 25. 3, 8.
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Art. 92, Page 128
3. 30. 5. 84.

Art. 94. Pages 130, 131

. @ + 6a5VD + 15a% + 200 Vb + 1502 + 6ab*Vh +- b,
12, 40 , 12
e te T
- ot — 8adyd + 280ty — 562ky? + T02%2 — 56olyt + 28eyt — 8xyk + ot
- a° + 60 + 150%* + 20a°F + 150%* + 60% + a. 17. 32.
- @® + 3a® + 3ab® + b + 3a% + 6abe + 3b%c + 3ac? + 3be? + .
2 4t 8F 2 4P 8z 16 24
81727 T 2T T3 3
32 16
-+
8
o - _2_6_ ad + l%a% . — 350%, + 35as3.
3 3 . 941,480,149,401.
. 1052 + 152% + 2%, . 0.885842380864.
. — 14,080a2. . 4.177.
. 5670z%5.
- 13! .
-yl x"ysa—%.
Art. 97. Page 135

3 1 7
-5,3— arctan(—z>- 19. =3 2+§V§.
V10, 6 = arctan (— 3).
o 21 — -4
1,6 = — 90°. 3
7,60 = —90° 23. z =4,y =2.
=6, 0 = 0°.
1 2
.7—113,0—arctan<-—§)-

.~ 141Vv3.

Art. 98,

.8+ 3i. 1
5 1
L4—i 5+

Art. 100. Page 138
.6+ 6iV3, 0 =60° r = 12, 9. — 10, 6 = 180°, r = 10.
- —8,0=180°7r=38 11, 3 — 3v34, 4 = 300°, r = 6.
. —2—2’i,0=225°,r=\/§_




ANSWERS: ODD NUMBERS

Art. 102, Pages 139, 140

. 16(— 1 + 7). 7. 16.

. 1L 11 + (V3 +9).
. 3(cos z + ¢ sin z) where z = 20°, 140°, or 260°.

. cos £ + 1 sin £ where z = 7°, 127° or 247°.

V3§ )
.—1',:{:—2—3—{—%- 19, £ 1, £,
.2, — 1, £4V3.

. 1, cos z + 7 sin z where z = 72°, 144°, 216° or 288°.
1, g ﬂ:% i
Art. 103. Page 141

9, —2.

~

2
1+1 L2 N
5 16. A

11,

Art. 107. Page 144
5. — 3. 9. z — 202+ 280+ 4z + 8.
\\¢&

Art. 109. Pages 146, 140

. Quotient: z* + 3z — 6. Remainder: 0\

. Quotient: 3z 4 2z + 4. Rcmaind’cr.'.’ »

. Quotient: &° — 4z* + 16z — 65. ~Remainder: 257.
. 12, 3, 43, N\
Art. 110. Page 148

. Between — 4 and — 3.5, between 0 and 0.3, between 3 and 3.5.

. Zerosat — 2, — 1,2, 3.

. Zero between — 1.5 and — 1, between — 1 and — 0.5, between 0 and 0.5
and between 2.5 and 3.

Art. 113. Pages 1560, 151
. Single roots: 2, — 1; double root: 3.

; 1,iv3 _1_iV3
. Single roots: 1, — §+__2_—, ~5—"3

T 1
. Single root: 3; root of multiplicity 5 : i

9. (a) 3 — 1022 + 31z — 30 = 0.

b) B —522+5x+3=0.
(¢) 2 —2z+5=0.

1t 13_@%_13&brqg}i:hréry.orv A
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Art. 117. Pages 15656, 166

A\
1. 43 + 1092 — 175y — 125 = 0. 7. 4 + 36 = 0.
3.yt EN0y2 + 3y — 2 = 0. 9. 38 — 32 + 10y + 12 = 0.
b.78 - 6y® + 3y — 270 = 0. 11, 4 — 32 + 15y — 26 = 0.

. One neg., two imag,
. One pos., four imag,.
. One pos., two imag.
. One neg., two imag,.
. Three pos.

y O1 - 1.
1=—6.
1=0.

. 1,1, £ 2.
1 i .
.6, —3, —iiQ\/&

, & £ 25,

. 2,827,

.y 49y — 90 = 0.

Art. 118. Pages 157, 158

11. One pos., and n — 1 imag.
13. One neg., two pos.
17. Two pos., one neg.
21. Two pos., two neg.

Art. 120. Page 159
T.b=2,b=—1.
11, —1.-.-,
13. 1. ---,

Art. 121. Page 162

11
12’ 2

11, - g ~1+v3 171

1 1
13. §7 - 57

1 19. No rational root.
3 21. 1,2, —2, 3, 4

15, — % + i

Art. 122. Page 164
3. 1.62. 5. 4.51.

Art. 123. Page 166
7. ¥+ 52+ 6y = 0.

L2t — 32 4+ 4y — 5 = 0. 9. y* + 7.1y2 + 8.47y — 0.207 = 0.

Art. 126. Pages 171-173

. 1.20. 11, — 3.40. : 21, 2.36-, 2.69, — 2.05.

. 5247, 13. 3.98.
. 2.48. 16. — 3.

23. 6.17.
25. 0.606.

. 0.13. 17. 1.88, — 0.35, — 1.53. 27. 0.32, 0.64.
. 2.90. 19. 3.01, 0.63, — 2.02, — 0.95.  29. 4.00 per cent.

. 11.07.

. 0.259. 3

35. 2\3/@ -

5 3/292 3 (292
=1.20, 24/222 _ 10 = £94 12 =180
8 20, 5V 3 10 =1.50, 3 3

Art. 127. Pages 174, 175

- B =28 — 24+ 2=0. 3. 28 — 922 4 23z — 15 = 0.
. L, 2 — 4ar 5z — 2 = 0, T. —2 2t — bzt + 4 = 0.
- 2y — 23y — 25y + 6 = 0. 11. 2,2, — 2.

. — 1,2, 5.

15. 1,2 4, ¢ = 14.




ANSWERS: ODD NUMBERS

L 3,V8

!2 2
. — 3, w, WA

. %log7—2log2—

1 1
610g5—510g2—

. log2+llog3.
3
. 3log 2+ log 7.

. 1.3222.

3.1416; 3.142; 3.14; 3.1.

. 60.5.

Art, 130. Page 180

% 1
TaEggls

. 3 &+ {V3).

9.3 —1=x4

Art, 132, Page 182

3.

1
71"' ,91100

Art. 133. Pages 183, 184

L log 5.

1
5 log 3.

13.
3 15.
17.
19,
21.
28,
25.

1.7993.
0.6990.
— 0.1505.
— 0.2922.
0.8005.
0.7398.
2.3122. &

7%

Art, 139, Pages 188, 189 \\ h

. 71.4 means some number between 71.35 and 714§; 71.40 means some "
number between 71.395 and 71.405; 71. 400 meéans some number be-
tween 71.3995 and 71.4005.
. 3.1415926536; 3.141592654; 3. 14159265,‘ 3\1415926 3.141593; 3.14159;

ay
.

. 5.4248125 and 5.9259375; ;;;7;.‘\',"
9. 10243~ and 193.18—; 193 )

. 86780.

. 2692,

. 13.16.

. 0.0002439.
. 0.7072.

. — 0.9648.
. 0.00008254.

NN

Art. 143. Page 194

17. 1.585.
19. 424.2.
21. 0.9550.
23. 2.565.
25. — 7.092.
27. 38.15.
29. 4.502.

. 1698 pounds.
. 1.084 sec.

. 13.33; 27.19.
. 108.3.

. 1,476,000.

. 1.246.

. 177.5.

. (1) 100,100; more accurate value 100,081;

(2) 85,450; more accurate value 85,442.

Art. 144, Page 198

7. 0.613L.
9. 3.215.

11, — 1.585.
13. — 0.8997.
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) Art. 146. Pages 200, 201
5. 0.4306:5 9. 21.54,
T+ Lg8. 11. 1000 or 0.01.

. ok [ = Vs +a] — loga_ 21. 0; =+ 1.32.
N log r 23. k = 0.00003776.
N9z = 7.925, y = — 5.820. 26. & = 0.126.

Art. 149. Pages 204, 206

1. $1344 to the nearest dollar. 9. 23.2 years.

3. $1347 to the nearest dollar,, 11. 25 digits.

5. $219, $39. 15. (a) $2653, (b) $2685, (c) $2718.
7. $1070 to the nearest dollar.

Art. 1560. Page 207
3. $3439, $2559. 6. $6463. 9. $1288.

Art. 154, Pages 210, 211

1. 210; 840. 7. 80,640. 11. 14,400.
3. 113,400. 9. 12,144. . 13. 17.
6. 11,352,

Art, 168. Pages 212, 213

1. 56. 9. 5. 19. 26.

3. 280. 11. 4. 21. 63.

5. 255. 13. 1512. 26. (n — 2)(n? — 4n + 6).
7. 18. 15. 462. 27. 1225.

Art. 162. Page 216
3. 0.45. )
' 20
Art. 164. Pages 217, 218
6. 0.5136. 11. $50. 15. 0.216.
30 1
9. ﬁ 13. Qz.
Art. 165. Page 220
1 7
50 é' 7o §' 9
Art. 166. Page 222
5. (1) 0.108; (2) 0.994.

1.
" 30

15. (1) 81" @)
17. The latter.

4651

19, o7rg




1.

3.

b.

2,1
e

ANSWERS: ODD NUMBERS

Art. 168. Page 226

1_ 1 . 7 1 1
T z+4+1 'I—I—2+:v+2.

2 _ 1 2 3 4
3z+1 22—1 Seritz—z 733
5 1 1 2 3
1—-5z =z+5 11'x+1+:z:+2+:c+3.

Art. 169. Page 227

-1 1 3 11 1
iyt sy TGy YitmoitEmoor
3 3.4 5 N\
T1+2-2+a"7F1

~

z—1

1 1 1 1 . www.dbraulibrary.org. i
':c+1+($+1)2+a:—1+ Y g A

z— 1) o

"y ¢

Art. 170. Page 228
2z — 3 1

1 L1
FrsritEET RECES R CER

1 z 2z + 3

2 TEFE

1 z—2

"zl P—z+1

2 1
T @ET
1 2 + 3

'z
T tEieri @ et

z+2 z

"FE1 @

1+ 11—z 2z — 1

TraTaFr T I-s+2

i 1 1 z—1 z+1

s EtTE T EFI @

Art. 174, Page 235
3. 0.

Art, 175. Page 237
: 9. — 99.
11, ab(a — b)(@ — DA - b).
13. a(a — B — o).
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Art. 179." Pages 243, 244
6.2 —1,3 —4. 11
9. Inconsistent. 16

Art. 187. Page 253

7. 60.
9. —9
11, 4.

Art. 189. Page 256
11, 5. L.
3 n+1 Va
$3 (_ 1)n+lxn+1 (._ 1)n—1x2n—l
(n+ 1)! T @2n— D!
Art. 193. Page 262
. Divergent. 23. Convergent. 26. Divergent.

7

Art. 194, Page 265

. Convergent. 7. Convergent. 13. Divergent.

3. Divergent. 9. Convergent. 15. Divergent.

. Divergent. 11. Convergent. 17. Convergent.

Art. 198. Page 269

. Convergent. 8. Convergent. 9. Convergent.
. Convergent. 7. Convergent. 11. 0.6321.

Art. 199. Pages 270, 271

. Convergent for | z | < 2.

. Convergent if — 2 < ¢ = 2, divergesif z < — 2 or if
. Divergent for all values of z for which the series is define
. Convergent for |z | < 1.

. Convergent for |z | < 1.

. Convergent for all values of 2,

. Convergent for all values of x. 17. 3.1416.

Art. 200. Page 272
1= 324622 ~ 1020 + 1520 ~ .. || < 1.

1 1 5 1
-l—y—§y2—§y3—§y4—---, lyl <3

2
1 1215 2

.2 1.
. Inconsistent.

27. Divergent.

19. Convergent.
21. Divergent.

13. 0.6988.

> 2.
d.




ANSWERS: ODD NUMBERS

. 1+-:v—x2+gx3—?x"+---,lxl<3l—-

V7
T

i .38 ,,5 5
(143 + &= +om= +ma=+

1 2 ,_14 35
3@ +57 g to”?

. 3.1623. 15. 2.8284. 17. 1.0164. 19. 2.9625-. 21. 0.6986.

.1 -

Art. 201. Page 274
. loggg = 0.223, logmg = 0.097". 3. 2.1972, 2.3026.




INDEX

Abscissa, 24 Cologarithm, 193
Absolute inequalities, 103 Combinations, 208, 211
Absolute values, 134, 245 Combined variation, 111
Addition, 3 Comments on graphs, 151
associative law of, 3 on variation, 112
commutative law of, 3 Common difference, 115
of complex numbers, 135 Common logarithms, 184
of radicals, 64 ratio, 117
Addition, or subtraction, golution by, Commutative law, 3, 4
42 Comparison series, 261
Algebraic expressions, 11 test, 258 X
Algebraic solution, 175 Complex fractions, 17 Ea M
Alternating series, 267 Complex numbers, 2}&%V2W.dbra}:l.l'lb'rary~or
Alternation, proportion by, 109 absolute value of, 134 \ N
Amount, compound, 203 addition of, 135
of annuity, 206 amplitude of, 134
Amplitude, 134 argument of, 134
Annuities, 203 conjugate, 137 7\
Annuity, amount of, 206 division of, 140
certain, 205 equal, 134 N\
present value of, 206 graphical representation of, 133
Approximate numbers, 186 modulus of;(134
Approximations to roots, 162 multipliéation of, 136
Argument, 134 polar Tor of, 134
Arithmetic means, 116 m{? of, 138
progression, 115 & Taction of, 135
Associative law, 3, 4 . Composition and division, proportion
Averages, problems on, 51 A8Y by, 109
Axes, 24 L} Compound amount, 203
Axis of imaginaries, 133 Y interest, 203
of reals, 133 probability, 218
Computation with approximate num-
Base, change of, 196 bers, 187
Base of system of logarithms, 197 with logarithms, 192
Binomial, coefficients, 212 Conditional equalities, 32
cube of, 14 inequalities, 103, 105
expansion, 129 Conic sections, 91
general term of, 129 Conjugate complex numbers, 137
series, 271 Constant, 22
theorem, 128 of variation, 110
Bounds, lower, upper, 158 Continuous curve, 27
Braces, 12 function, 250
Brackets, 12 Convergence, 254
Briggs’s system of logarithms, 184 interval of, 270
Convergent series, 255
Caleulation of logarithms, 202, 273 Converse of factor theorem, 143
Change of base (logarithms), 196 Conversion period, 203
Characteristic, 185 Cobrdinate axes, 24
Cirele, 91 Cobrdinates, 24
Coefficients, binomial, 212 Cube of binomial, 14
in terms of roots, 173 Cube roots of unity, 140, 177
[ Numbers refer to pages.]
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Cubes, difference of two, 1%, N

Cubic equation, 38, 176
Curve, contintious, 27

Decimal}, }epeating, 121

Defect,ive‘équations, 35

DegrQe\of an equation, 38
Of an expression, 37

{ of\a polynomial, 37
7De Moivre’s theorem, 138
_“Denominator, 5

rationalizing the, 61, 67
Dependent events, 219

Derived properties of numbers, 7

Descartes’s rule of signs, 156
Determinants, 43, 52, 230
elements of, 44
order of, 44
principal diagonal of, 44
solution by, 43, 47, 238
third order, 46
Diagonal, principal, 44, 231
Difference, common, 115
of two cubes, 14
of two squares, 13
Discriminant of quadratic, 82
Distributive law, 4
Divergence, 254
Divergent series, 255
Dividend, 5
Division, 5
by zero, 6
of complex numbers, 140
of radicals, 67
proportion by, 109
synthetic, 144
Double roots, 149

Elements of a determinant, 44
of progressions, 115, 117
Eliminant, 243
Elimination, 42, 242
solution by, 42
Ellipse, 91
Equal complex numbers, 134
Equalities, 32
conditional, 32
identical, 32
Equally likely cases, 215
Equations, 32
algebraic solution of, 175
containing radicals, 68
cubic, 38, 176
defective, 35
equivalent, 33
exponential, 199
general, 142
homogeneous, 240

INDEX

sum of two, 14 PR

o
incompatible, 41
inconsistent, 41
in p-form, 160
in quadratic form, 78
linear, 38, 40, 88
logarithmic, 199
numeriecal, 142
quadratic, 38, 74, 88
quartie, 178
quintic, 38
rational integral, 38
redundant, 35
roots of, 33, 142
solution of, 32
syminetrical, 97
theory of, 142
transformation of, 154

Equivalent equations, 33

Events, dependent, 219
independent, 219
mutually exclusive, 218

Expansion, binomial, 129
by minors, 235

Expectation, 217

Exponential equations, 199

Exponents, 54, 55
generalization of, 181
laws of, 54
negative, 57
positive integral, 54
zero, 57

Expressions, algebraic, 11
identical, 11

Extremes, arithmetic, 116
geometric, 118
of a proportion, 108

Factor, monomial, 13
Factor theorem, 143
converse of, 143
Factored polynomials, 151
Factorial, 127
Factoring, 13
Factors, 4
Failures (in probability), 214
Figures, significant, 68, 186
Finite series, 120
Forms, indeterminate, 251
Fourth proportional, 109
Fractional exponents, 55
Fractions, 5
complex, 17
partial, 224
rational, 1, 132
Funections, 22
continuous, 250
defined by tables, 27
graphs of, 22, 26
limiting values of, 250

[Numbers refer to pages.]




INDEX

quadratic, 74

zeros of, 30
Functional notation, 23
Fundamental operations, 3

General equation of degree n, 142
of second degree, 88
General quadratic in two variables, 88
General term of binomial, 129
Generalization of exponents, 181
Generalized ratio test, 266
Geometric extremes, 118
means, 118
Geometric progressions, 117
elements of, 117
infinite, 119
Graphical meaning of solutions, 89
Graphical representation
of complex numbers, 133
of inequalities, 103, 106
of real numbers, 1
Graphical solution of equations, 44, 148
Graphs, comments on, 151
of functions, 22, 26
of log z, 198
of polynomials, 147
of quadratic, 83
successive, 162
Greater than, 2
Groups, substitution, 176

Harmonic means, 122
progressions, 121
Homogeneous equations, 240
Horner’s method, 166
Hyperbola, 90, 91

Identical equalities, 32
expressions, 11
ldentities, 11, 32
Imaginary numbers, 2, 70, 132
roots, 152
Incompatible equations, 41
Incomplete quadratic, 81
Inconsistent, equations, 41
Independent events, 219
Indeterminate forms, 251
Index laws, 54
of a root, 60
Induction, mathematical, 125
Inequalities, 103
absolute, 103
conditional, 103, 105
graphical representation of, 103, 106
laws of, 103
Sense of, 103
InfaI}t mortality, 27
Infinite geometrical progression, 119

series, 121, 254
series, sum of, 121
Infinitesimals, 246
Infinity, 249
Integers, 1
Interest, compound, 203
Interpolation, 189
Interval of convergence, 270
Inverse variation, 111
Inversion, 231
proportion by, 109
Irrational numbers, 1, 63, 181
roots, 162, 166
Irreducible case, 178

Laws of exponents, 54
of inequalities, 103

Less than, 2

Limits, 245, 251

Linear equations, 38, 40
systems of, 40, 23§” w
type form of, 40

Location theorem, 159 "

Logarithmic equations, 199
series, 273 -

Logarithms, 181
Briggs's system o\f\
calculation of,,202
characteristie,of;y 185
common, 184/
computation with, 192
defini onrof, 181
mapntissa of, 185
modulus of, 197
N apierian, 184

wg.%braghb ry.org.in

w\Natural, 184, 197

properties of, 182
table of, 190, 191
Lower bounds of roots, 158

Mantissa, 185
Mathematical expectation, 217
induction, 125
Mean proportional, 109
Means, arithmetic, 116
geometric, 118
harmonic, 122
of a proportion, 108
Measurement, 108
Method, Horner’s, 166
of successively enlarged scales, 164
Minors, 235
expansion by, 235
Mixtures, problems on, 51
Modulus (in logarithms), 197
of complex numbers, 134
Monomial factor, 13
Mortality, infant, 27
Motion, problems involving, 113

[Numbers refer to pages.]

.
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INDEX

Multiple roots, 149
Multiplication, 3
associati\e law of, 4
commytative law of, 4
digtzibutive law of, 4
of ‘eotaplex numbers, 136
“of\radicals, 65

 Multiplicity, 149

N

Napierian logarithms, 184
Natural logarithms, 184, 197
Nature of roots of quadratic, 82
Negative exponents, 57
numbers, 1
numbers in logarithmic computa-
tions, 194
roots, 157, 170
Notation, functional, 23
Number of roots of an equation, 148
of quadratic, 80
Numbers, 1
approximate, 186
complex, 2, 132
derived properties of, 7
imaginary, 2, 70, 132
irrational, 1, 63, 181
negative, 1
rational, 63
Numerator, 5
Numerical equations, 142

0Odds, 216
Operations, fundamental, 3
on equations, 34, 35, 36
Order of a radical, 60
of a determinant, 44
Ordinate, 24
Origin, 24

Parabola, 91, 92
Parentheses, 8, 12
Partial fractions, 224
Perfect trinomial square, 13
Permutations, 208
p-form, equation in, 160
Physics, problems in, 52
Plotting, 25
Polar form of complex numbers, 134
Polynomials, 27, 37
factored, 151
graphs of, 147
zeros of, 142
Positive integers, 1
integral exponents, 54
roots, 156
Power series, 269
Present value, 203
of annuity, 206

Pressure, problems involving, 114
Principal diagonal (determinants), 44
231

roots, 56

term (determinants), 231
Principle of proportional parts, 189
Probability, 214

approximate, 215

compound, 218

total, 218
Product of roots of quadratic, 82
Progressions, 115

arithmetic, 115

elements of, 115

geometric, 117

harmonic, 121

terms of, 115
Proportion, 108

by alternation, 109

by composition and division, 109

extremes of a, 108

inversion, 109

means of a, 108
Proportional, fourth, 109

mean, 109

parts, principle of, 189

third, 109
Pure imaginaries, 132

Quadrant, 24
Quadratic, discriminant of, 82
equations, 38, 74, 88, 175
equations in two unknowns, 88
form, 78
function, 74
general, 74, 88
graph of, 83
incomplete, 81
nature of roots of, 82
product of roots of, 82
roots of a, 79
solution by factoring, 75
solution by formula, 75
special forms of, 81
sum of roots of, 82
typical form of, 74
Quartic equation, 38, 178
Quintic equation, 38

Radicals, 54, 60
addition of, 64
division of, 67
equations containing, 68
in simplest form, 61
multiplication of, 65
order of, 60
solution by, 175
subtraction of, 64
Radicand, 60
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Ratio, 108
common, 117
test, 263
test generalized, 266
Rational fractions, 1, 133
integral equations, 38
integral expressions, 37
numbers, 63
roots, 160
Rationalization of denominators, 61, 67
Real numbers, 1
Reciproeal, 5, 16
Redundant equations, 35
Rejecting figures, 187
Relative frequency, 214
Remainder, 4
theorem, 143
Repeated trials, 221
Repeating decimals, 121
Roots, approximation to, 162
double, 149
imaginary, 152
indices of, 60
irrational, 162, 166
multiple, 149
nature of, 82
negative, 157, 170
number of, 80, 148
of complex numbers, 138
of equations, 33, 142
of quadratic, 79-
principal, 56 _
rational, 160
transformation to diminish, 164
triple, 149
Rule of signs, Descartes’s, 156

N oo
Second degree, general equation o}.

88
Sense of an inequality, 103
Series, alternating, 267
approximate sum of, 268
binomial, 271
convergent, 255
divergent, 255
finite, 120
for comparison, 261
infinite, 121, 254
logarithmie, 273
power, 269
Significant figures, 68, 186
Signs, Descartes's rule of, 156
Similar figures, 109
Simplest form of radical, 61
Solutions, algebraic, 175
by addition, 42
by determinants, 47
by elimination, 42
by Horner's method, 166

by method of successively enlarged
scales, 164
by radicals, 175
by substitution, 42
by subtraction, 42
graphical, 41, 89, 148
of an equation, 32
trivial, 240
Special devices for solving quadratics,

Squares, difference of two, 13
Strength of materials, problems on,
113
Subscript, 20
Substitution, solution by, 42
testing by, 36
Subtraction, 4
of complex numbers, 135
of radicals, 64 &N
Success (in probabilitsy,veidbraul
Successive graphs, 162 o\
Sum, defined, 3 3
of arithmetic progressiom\l15
of geometric progression\N120
of infinite series, 121
of roots of equas'g’n@,"SZ 174
of series (approximate), 268
of two cubes,{1%
Symmetrical €duations, 97
Synthetic division, 144
Systems/of Yinear equations, 40

NS

Table‘of logarithms, 190
Te}‘;S, 12
Sknown, 81
% principal (determinants), 231
Terms of a progression, 115
Test, comparison, 258
ratio, 263
Theorem, binomial, 128
De Moivre’s, 138
factor, 143
location, 159
on quadratics, 79
remainder, 143
Theory of equations, 142
Third proportional, 109
Three equations, three unknowns, 45
Total probability, 218
Transformation of equations, 154
to diminish roots, 164 .
Transposing terms of an equation, 34
of an inequality, 103
Trials (probability), 214
repeated, 221
Trinomials, 13
Triple roots, 149
Trivial solution, 240 .
Typical form of quadratic, 74
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INDEX

Uniform motion, problems on, 52 inverse, 111
Unity, cube\{oots of, 140, 177 joint, 111

definedy, 5

Upper, bgunds of roots, 158

28 N
Vatiable, 22
Variation, 108, 110
#" combined, 111

cormments on, 111
constant of, 110
direct, 110

of sign, 156
Vinculum, 12

Zero, 4
division by, 6
exponents, 57
multiplication by, 7
of a function, 30
of a polynomial, 142
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